Toggle light / dark theme

Intrinsic resistance to the idea of life extension or wrong messaging?

Why is it so hard to convince people living longer is a good thing? This short article has some evidence worth considering.


Most advocates of life extension report facing resistance to the idea of increased lifespans by medical means when trying to disseminate this idea among general public. Resistance manifests itself in many forms, ranging from concerns such as overpopulation to concerns about unequal access to life extending treatments. But the most unexpected thing is probably that people often don’t want an increased lifespan at all. Surveys in different countries show, that when people are asked “how long would you like to live?”, they often give a number equal to or slightly higher than the current life expectancy in a given country[1–4].

But wait… Isn’t extending life for more decades a good thing that everyone should strive for? In reality we often do not see enough enthusiasm for the idea in general. So why is this?

It’s not what you say, it’s how you say it

Team discovers how bacteria exploit a chink in the body’s armor

Microbial burden is a real problem in aging and researchers are finding ways to boost our immune system to resist these microscopic enemies.


Microbial burden is a significant contribution to aging and our bodies are under daily attack from these microscopic invaders. The more completely we can remove these invaders the less impact they will have on the aging process.

“Researchers at the University of Illinois at Urbana-Champaign and Newcastle University in the U.K. are investigating how infectious microbes can survive attacks by the body’s immune system. By better understanding the bacteria’s defenses, new strategies can be developed to cure infections that are currently resistant to treatments, the researchers said”

Insecticides mimic melatonin, creating higher risk for diabetes

Synthetic chemicals commonly found in insecticides and garden products bind to the receptors that govern our biological clocks, University at Buffalo researchers have found. The research suggests that exposure to these insecticides adversely affects melatonin receptor signaling, creating a higher risk for metabolic diseases such as diabetes.

Published online on Dec. 27 in Chemical Research in Toxicology, the research combined a big data approach, using computer modeling on millions of chemicals, with standard wet-laboratory experiments. It was funded by a grant from the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Disruptions in human circadian rhythms are known to put people at higher risk for diabetes and other metabolic diseases but the mechanism involved is not well-understood.

Thinnest-ever electronic tattoos are capable of precision health monitoring

The graphene temporary tattoo seen here is the thinnest epidermal electronic device ever and according to the University of Texas at Austin researchers who developed it, the device can take some medical measurements as accurately as bulky wearable sensors like EKG monitors. From IEEE Spectrum:

Graphene’s conformity to the skin might be what enables the high-quality measurements. Air gaps between the skin and the relatively large, rigid electrodes used in conventional medical devices degrade these instruments’ signal quality. Newer sensors that stick to the skin and stretch and wrinkle with it have fewer airgaps, but because they’re still a few micrometers thick, and use gold electrodes hundreds of nanometers thick, they can lose contact with the skin when it wrinkles. The graphene in the Texas researchers’ device is 0.3-nm thick. Most of the tattoo’s bulk comes from the 463-nm-thick polymer support.

The next step is to add an antenna to the design so that signals can be beamed off the device to a phone or computer, says (electrical engineer Deji) Akinwande.

Brain atlas advances MRI exploration

January 20, 2017 — Researchers have developed a high-resolution, interactive anatomic brain-mapping atlas they say can overcome the limitations of functional MRI (fMRI) and expand the modality’s value to conventional MR brain imaging and standard MRI applications.

The Gibby-Cvetko atlas is designed to segment the brain into finite anatomic regions with a resolution of 1 mm or less to correct for variations in the brain sizes of patients and better delineate the location of cortical structures and skull morphology.

“Having a high-resolution, interactive, quantitative brain atlas that we warp to fit the patient and run inside a PACS improves accuracy and speed of reading fMRI studies,” said co-developer Dr. Wendell Gibby, an adjunct professor of radiology at the University of California, San Diego. “It is a big step toward routine utilization of fMRI in clinical practice.”

In Mumbai: 35.3% premature deaths were results of stroke because of air pollution

Most premature deaths in Mumbai and Delhi over two decades were caused by stroke (a medical condition that occurs when blood supply to the brain is cut off), due to inhalation of ultrafine suspended particles, revealed a study by the Indian Institute of Technology – Bombay (IITB).

The three-member IITB team attributed 35.3% premature deaths to cerebrovascular disease – arteries supplying blood to the brain is affected – as a result of being exposed to high levels of particulate matter of size less than 2.5 microns in diameter (PM2.5) between 1991 and 2015. Additionally, premature deaths due to ischemic heart disease (it falls under the group of cardiovascular diseases) and chronic obstructive pulmonary disease (COPD) stood at 33.3% and 22.9% during the same period.

A dangerous pollutant, PM2.5 can lodge deep into the lungs and cardiovascular system, giving rise to a host of problems from damage to lung tissue, sneezing, asthma attacks, migraines, headaches to even cancer and heart attacks. The elderly, children, and those with chronic lung disease, influenza, or asthma, are especially sensitive to the effects of PM2.5.

Brain stimulation used like a scalpel to improve memory

Precise memory, rather than general memory, is critical for knowing details such as the specific color, shape and location of a building you are looking for, rather than simply knowing the part of town it’s in. This type of memory is crucial for normal functioning, and it is often lost in people with serious memory disorders.

“We show that it is possible to target the portion of the brain responsible for this type of memory and to improve it,” said lead author Joel Voss, assistant professor of medical social sciences at Northwestern University Feinberg School of Medicine. “People with brain injuries have problems with precise memory as do individuals with dementia, and so our findings could be useful in developing new treatments for these conditions.”

By stimulating the brain network responsible for spatial memory with powerful electromagnets, scientists improved the precision of people’s memory for identifying locations. This benefit lasted a full 24 hours after receiving stimulation and corresponded to changes in brain activity.

On-demand pain relief, triggered by light

It will be amazing how this advances with Quantum.


Once injected into the body, a new material can repeatedly release small bursts of local anesthetic when zapped by low-intensity, near-infrared light for one minute (Nano Lett. 2016, DOI: 10.1021/acs.nanolett.6b03588). The material’s developers, who have tested it in rats, say the on-demand system could make pain management safer and more effective, and give patients more control.

Equipping Insects for Special Service

Draper combines navigation and neuromodulation to guide insects

CAMBRIDGE, MA – The smallest aerial drones mimic insects in many ways, but none can match the efficiency and maneuverability of the dragonfly. Now, engineers at Draper are creating a new kind of hybrid drone by combining miniaturized navigation, synthetic biology and neurotechnology to guide dragonfly insects. The system looks like a backpack for a dragonfly.

DragonflEye, an internal research and development project at Draper, is already showing promise as a way to guide the flightpath of dragonflies. Potential applications of the technologies underpinning DragonflEye include guided pollination, payload delivery, reconnaissance and even precision medicine and diagnostics.

Will synthetic biology help us to eliminate age-related diseases?

A quick look at synthetic biology and its potential for health and treating age-related diseases.


All living organisms contain an instruction set that determines what they look like and what they do. These instructions are encoded in the organism’s DNA within every cell, this is an organism’s genetic code (or “genome”).

Mankind has been altering the genetic code of plants and animals for thousands of years, by selectively breeding individuals with desired features. Over time we have become experts at viewing and manipulating this code, and we can now take genetic information associated with the desired features from one organism, and add it into another one. This is the basis of genetic engineering, which has allowed us to speed up the process of developing new breeds of plants and animals.

More recent advances however have enabled scientists to create new sequences of DNA from scratch. By combining these advances in biology with modern engineering, chemistry and computer science, researchers can now design and construct new organisms with cells that perform new useful functions. This “customised” cell biology is the essence of synthetic biology.