Toggle light / dark theme

As you relax and let your mind drift aimlessly, you might remember a pleasant vacation, an angry confrontation in traffic or maybe the loss of a loved one.

And now a team of researchers at Duke University say they can see those various emotional states flickering across the human brain.

“It’s getting to be a bit like mind-reading,” said Kevin LaBar, a professor of psychology and neuroscience at Duke. “Earlier studies have shown that functional MRI can identify whether a person is thinking about a face or a house. Our study is the first to show that specific emotions like fear and anger can be decoded from these scans as well.”

Read more

Detailed commentary on the new SENS Research videos about aging and rejuvenation biotechnology.


The SENS Research Foundation has assembled a set of narrated cellular biochemistry animations that serve as an introduction to the various distinct projects that make up the field of rejuvenation biotechnology. The videos outline the forms of cell and tissue damage that are the root cause of aging and age-related disease, as well as the classes of therapy that could, once constructed, either repair that damage or bypass it entirely. Since aging is exactly an accumulation of damage and the consequences of that damage, repair of the damage is the basis for rejuvenation, the reversal and prevention of degenerative aging and all age-related disease. The goal for the near future is to align ever more of the research community and its funding institutions with this goal, and make real progress towards bringing an end to the pain, suffering, and disease of aging.

Introducing SENS — Metabolism, Damage, Pathology

Read more

A look at the concept of Self-Replicating Machines, Universal Assemblers, von Neumann Probes, Grey Goo, and Berserkers. While we will discuss the basic concept and some on-Earth applications like Medical Nanotechnology our focus will be on space exploration and colonization aspects.

Watch More Videos From Isaac Arthur

Read more

Something like this…How can we extend sex appeal?

Gyms and beauty salons are in charge of this question now. There is some success, but it’s mostly superficial. Plastic surgery only masks, but doesn’t delay the processes of aging.

Expanding sex appeal is a complex task. Its aspects include both beauty and the activity of the brain. To be sexually attractive we have to be smart and fun. One cannot solve the problem of dementia with makeup.

We have to be in an excellent physical shape to be sexually attractive, but also things should be running smoothly with our hormonal regulation.

The task of extending the period of sex appeal is extremely science-intensive. It is not only the Viagra, but a complex impact on the whole organism. It is obvious that molecular biology is responsible for sex in the modern world.

Read more

Very true points that many have been raising with CRISPR, Synthetic Biology, BMI, and humanoid technology. I am glad to see this article on ethics and standards because it really needs to be discussed and implemented.


New brain technologies will increasingly have the potential to alter how someone thinks, feels, behaves and even perceives themselves.

By Nicholas West

Read more

Sharing for all my Neuro science friends and techie friends — Sept 29th is the Inaugural Cornell Neurotech Mong Family Foundation Symposium. Some of Cornell’s top award winning neuro scientists will be presenting.


Interested in learning how the brain works?

Some of Cornell’s best scientists studying the brain will gather Sept. 29 for the Inaugural Cornell Neurotech Mong Family Foundation Symposium. The symposium features three alumni winners of the 2015 Brain Prize – Winfried Denk, Ph.D. ’89, Karel Svoboda ’88 and David Tank, M.S. ’80, Ph.D. ’83 – as well as award-winning Cornell faculty who will share how they are exploring the brain using the most modern, innovative technologies.

Talks begin at 10 a.m. in Room G10 Biotechnology and conclude at 5 p.m. with a public reception. The symposium is free and the public is invited.

Read more

By now, you’ve no doubt heard of CRISPR, the latest gene-editing tool sweeping research labs across the globe. It was first discovered in certain strains of bacteria, who use it as an important weapon against dangerous viruses. In bacteria, CRISPR identifies a virus that poses a threat, records the virus’ genetic data and imprints it onto RNA molecules. An immune enzyme called Cas9 grabs one of the RNA molecules and goes exploring. When Cas9 encounters a virus that matches the data on the RNA molecule, it latches on and slices the virus in half to prevent it from replicating and posing any threat.

Researchers have co-opted the CRISPR/Cas9 mechanism to edit genes. Instead of copying dangerous viral DNA sequences onto the RNA molecules, they can copy over any sequence they want to edit. And instead of Cas9 destroying viruses, it makes precise cuts and removes specific bits of genetic data from the designated sequence. This allows researchers to target and edit specific gene sequences with genetic data of their choosing.

Read more