Toggle light / dark theme

Tiny, implantable device uses light to treat bladder problems

A team of neuroscientists and engineers has developed a tiny, implantable device that has potential to help people with bladder problems bypass the need for medication or electronic stimulators.

The team — from Washington University School of Medicine in St. Louis, the University of Illinois at Urbana-Champaign, and the Feinberg School of Medicine at Northwestern University in Chicago — created a soft, implantable device that can detect overactivity in the bladder and then use light from tiny, biointegrated LEDs to tamp down the urge to urinate.

The device works in laboratory rats and one day may help people who suffer incontinence or frequently feel the need to urinate.

Facility for Rare Isotope Beams

FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). FRIB is funded by the DOE-SC, MSU and the State of Michigan. Supporting the mission of the Office of Nuclear Physics in DOE-SC, FRIB will enable scientists to make discoveries about the properties of rare isotopes (that is, short-lived nuclei not normally found on Earth), nuclear astrophysics, fundamental interactions, and applications for society, including in medicine, homeland security, and industry.

This video — The Facility for Rare Isotope Beams at MSU — explains the history of FRIB, its role in research and education, and its future in rare-isotope discoveries. It includes an animated sequence to help viewers understand what FRIB is about.

Employment opportunities: FRIB is looking for engineers, physicists, and other talented professionals to build the world’s leading rare isotope facility.

Mental Candy Is Also Unhealthy

We take a somewhat humorous look at the messaging and the comfort stories people tell themselves to distract themselves from seeing why age-related diseases and dying from them is a problem that needs solving.


Here’s what might be considered a paradox: right now, the Facebook page of Death Cafe—a place where you go to talk about death—is a rather lively place, whereas pages about life extension are comparatively rather dead places. This screenshot shows the activity of a Death Cafe post:

There is no doubt that the subscribers of the Death Cafe page are quite engaged, but if the average message that the page aims at conveying is the same as in the text snippet above, then there is no paradox at all. The core of that message is “don’t worry, death is nothing to fear” (which, incidentally, implies you don’t have to engage in any extra effort to prevent death), whereas the core message of a life extension page is, “death is a problem, but hey—with some effort, we can beat it. Maybe.” That’s a bit like a kiosk giving candy away for free right next to another kiosk that first serves you overcooked broccoli and then says that you might get a nice present decades from now, assuming that you work hard enough for it—where do you think most people would flock to? Exactly.

Bill Gates warns that nobody is paying attention to this state-of-the-art scientific technology that could make inequality even worse

Gene editing is one of the most promising new approaches to treating human diseases today.

It also raises “enormous” ethical questions, Bill Gates recently warned, and “could make inequity worse, especially if it is available only for wealthy people.”

“I am surprised that these issues haven’t generated more attention from the general public,” he said in a December blog post, adding that “this might be the most important public debate we haven’t been having widely enough.”

Scientists could engineer a spicy tomato. Is it worth it?

Spicy food is popular the world over, but the active ingredient that makes food taste “hot”—capsaicinoids, a group of chemical compounds has useful properties beyond making food taste delicious. However, the plants that make them (the chili pepper family, or Capsicum) are small and have relatively low yields. A new paper published today in the journal Trends in Plant Science proposes an alternative: engineering tomato plants to produce capsaicinoids. If all goes well, someday, you could enjoy a spicy tomato, or even be treated with capsaicinoids extracted from one.

The paper, written by a group at Brazil’s Federal University of Viçosa, builds on recent work that showed the tomato has all the genetic information it needs to produce capsaicinoids. “We know that all the genes are there, but in the tomato they are silent,” study author Agustin Zsӧgӧn says. His paper proposes a method for using gene-editing techniques to activate the genetic machinery in the tomato that tells it how to produce capsaicinoids, transforming the plant into both a “biofactory” that could produce larger amounts of the chemicals than it’s currently possible to grow and a spicy snack.

Tomatoes have capsaicinoid genetic pathways like peppers because the two South American plants are related. “In our lab, we work with both species,” Zsӧgӧn says. Last year, his team used gene editing to “domesticate” a wild tomato in just a few generations, engineering the strain to produce larger fruit, and greater quantities of it, than in the wild. This kind of process is how we ended up with the crops we eat today—early farmers planted the offspring of the most fruitful plants of each generation, enabling their genetic survival. CRISPR-Cas9 is just a shortcut.

/* */