Toggle light / dark theme

We can just imagine the scenario that spawned this paper: a bunch of microbiologists sitting around the lab coffee machine, looking for a way to procrastinate, and voila…coffee machine microbiome! Here, the researchers not only sampled bacteria from 10 different Nespresso machines, but they also “conducted a dynamic monitoring of the colonization process in a new machine” (charge new lab coffee machine to grant: check). They found that bacteria rapidly colonized the sludge that sits inside the machines, and many of these species were adapted to the high levels of caffeine and other compounds found in coffee. We’d suggest that they study what lives in the office fridge next, but really–not even a microbiologist wants to go there!

The coffee-machine bacteriome: biodiversity and colonisation of the wasted coffee tray leach

“Microbial communities are ubiquitous in both natural and artificial environments. However, microbial diversity is usually reduced under strong selection pressures, such as those present in habitats rich in recalcitrant or toxic compounds displaying antimicrobial properties. Caffeine is a natural alkaloid present in coffee, tea and soft drinks with well-known antibacterial properties. Here we present the first systematic analysis of coffee machine-associated bacteria. We sampled the coffee waste reservoir of ten different Nespresso machines and conducted a dynamic monitoring of the colonization process in a new machine. Our results reveal the existence of a varied bacterial community in all the machines sampled, and a rapid colonisation process of the coffee leach. The community developed from a pioneering pool of enterobacteria and other opportunistic taxa to a mature but still highly variable microbiome rich in coffee-adapted bacteria. The bacterial communities described here, for the first time, are potential drivers of biotechnologically relevant processes including decaffeination and bioremediation.”

Read more

Good article and perspective. And, I believe areas like Finance and Legal will be addressed over the next 5 to 7 years with AI. However, much of our critical needs are in healthcare particularly medical technology and Infrastructure (including security); and these need to get upgraded and improved now.


I recently read a thought provoking article by Klaus Schwab, called ‘The Fourth Industrial Revolution: what it means, how to respond’. At the beginning of the article Schwab describes the first three industrial revolutions, which I think we’re all fairly familiar with:

1784 – steam, water and mechanical production equipment.

Read more

I have nothing against the idea of designer babies. Why not better ourselves through science? There will always be a baseline version of humanity kicking around, even if it’s in cold storage,thus ensuring that any mistakes made early on don’t destroy the species. Besides, the same technology that allows us to make ourselves better could just as easily be used to repair us if we do make a mistake of some kind. TOO much red-tape, as always.


Room: B-3245.

Recent discoveries and advances in medicine are setting the bioethical world on fire. Some technologies, such as CRISPR-Cas9 and fast DNA sequencing techniques, have tremendously increased our control over our own genome. GMOs, Gene Therapy and life extension are examples of applications of our new gained knowledge in genetics. For more than a few, the thought of scientists playing with the fundamental building blocks of life brings an uneasy feeling. Yet, what are the scientists really doing?

As technologies keep on advancing, it is crucial to question ourselves on the implications of genetic research, and the first step to do so is to understand what is being done in the laboratories. The goal of this presentation is to convey reliable information on the field of genomics to non-experts so that they can take on a rational stance on the issues at hand. Simultaneously, in the spirit of Philopolis, the presentation revolves around the philosophical question of what is natural and what is not.

Christophe Lachance-Brais and @[601985428:2048:Philippe Castonguay] will give the talk and animate the discussion.

The 1h presentation will be followed by a 30 minute discussion.

Read more

Photochemical tissue bonding (PTB) is a light-based method to repair tissues and is an alternative to traditional sutures and staples used to close wounds. Unlike the latter, PTB does not cause inflammation and scarring at the repair site. PTB works by applying light-sensitive Rose Bengal dye to the exposed tissue. When the dye is exposed to green light, the dye absorbs the light, thereby causing the tissue to crosslink and form a water-tight seal. While PTB can seal incisions sans inflammation, the technique is limited by how deep the light can penetrate the tissue. Researchers from the University of St Andrews and Harvard Medical School have developed a bioabsorable optical waveguide, which can deliver light deep into tissues before being absorbed.

In a study published in Nature Communications, researchers fabricated optical waveguides from a variety of polymers, but ultimately tested the degradation times of the polymers PVP and PLGA (50:50) in vivo. They inserted 1 × 5 mm x 500 µm pieces of bulk polymer subcutaneously in mice and examined the implant at different time points. The PVP waveguide dissolved within one hour of implantation, whereas the PLGA polymer began to lose shape after 17 days, illustrating that researchers can tune the degradation time (ranging from hours to days) of the optical waveguide for a specific application.

After establishing the biodegradability of the polymer waveguides, the team showed how the waveguides could extend the penetration depth in PTB. Light was coupled to the device via pigtail fiber, which was trimmed off after light was applied, thus leaving only the bioabsorable polymer within the wound. Immediately after a pig was killed, they made a “full-thickness incision” (1 cm) on the dorsal skin and applied Rose Bengal dye. In the control, they applied 532-nm light (1 W) for 15 minutes at the surface of the wound. In waveguide assisted PTB, they inserted the polymer waveguide and applied light through the waveguide, effectively increasing the penetration depth of the light. The shear tensile strength of the control PTB was 0.33 kPa compared to 1.94 kPa in the waveguide assisted PTB, illustrating that the optical waveguide enabled tissue crosslinking and wound healing at greater depths.

Read more

What would be really cool is have a “Computer Screen in a Can”; take your polymer spray and instantly create a screen on a table, a window, suitcase, etc. with your “Computer Screen in a Can”; U Can! I can just imagine the infomercials. On a more serious note — NW Univ has developed a new Hybrid Polymer which is going to expand the capabilities of polymer into so many areas in medicine, to manufacturing, electronics, self reparing material & devices, etc.

http://www.compositesworld.com/news/northwestern-university-…id-polymer


A completely new hybrid polymer has been developed by Northwestern University (Evanston, IL) researchers.

“We have created a surprising new polymer with nano-sized compartments that can be removed and chemically regenerated multiple times,” said materials scientist Samuel Stupp, the senior author of the study and director of Northwestern’s Simpson Querrey Institute for BioNanotechnology. The study was published in the Jan. 29 issue of Science.

“Some of the nanoscale compartments contain rigid conventional polymers, but others contain the so- called supramolecular polymers, which can respond rapidly to stimuli, be delivered to the environment and then be easily regenerated again in the same locations. The supramolecular soft compartments could be animated to generate polymers with the functions we see in living things,” he said.

Future of Life Institute illustrate their objection to automated lethal robots:

“Outrage swells within the international community, which demands that whoever is responsible for the atrocity be held accountable. Unfortunately, no one can agree on who that is”


The year is 2020 and intense fighting has once again broken out between Israel and Hamas militants based in Gaza. In response to a series of rocket attacks, Israel rolls out a new version of its Iron Dome air defense system. Designed in a huge collaboration involving defense companies headquartered in the United States, Israel, and India, this third generation of the Iron Dome has the capability to act with unprecedented autonomy and has cutting-edge artificial intelligence technology that allows it to analyze a tactical situation by drawing from information gathered by an array of onboard sensors and a variety of external data sources. Unlike prior generations of the system, the Iron Dome 3.0 is designed not only to intercept and destroy incoming missiles, but also to identify and automatically launch a precise, guided-missile counterattack against the site from where the incoming missile was launched. The day after the new system is deployed, a missile launched by the system strikes a Gaza hospital far removed from any militant activity, killing scores of Palestinian civilians. Outrage swells within the international community, which demands that whoever is responsible for the atrocity be held accountable. Unfortunately, no one can agree on who that is…

Much has been made in recent months and years about the risks associated with the emergence of artificial intelligence (AI) technologies and, with it, the automation of tasks that once were the exclusive province of humans. But legal systems have not yet developed regulations governing the safe development and deployment of AI systems or clear rules governing the assignment of legal responsibility when autonomous AI systems cause harm. Consequently, it is quite possible that many harms caused by autonomous machines will fall into a legal and regulatory vacuum. The prospect of autonomous weapons systems (AWSs) throws these issues into especially sharp relief. AWSs, like all military weapons, are specifically designed to cause harm to human beings—and lethal harm, at that. But applying the laws of armed conflict to attacks initiated by machines is no simple matter.

Repeated incidents of inflammation in the stomach could mean a higher risk to colon cancer — new research released shows this.


“A quarter of the world’s population is affected by some type of gut inflammation and these patients always have a much higher chance of developing colon cancer,” said lead author Xiling Shen, associate professor at Duke University in North Carolina, US.

The scientists focussed on a microRNA — a class of naturally occurring, small non-coding ribonucleic acid (RNA) molecules — called miR-34a that gives cancer stem cells the odd ability to divide asymmetrically. This process controls the cancerous stem cell population and generates a diverse set of cells.

However, the problem showed up when the mice’s tissues became inflamed. Without any microRNA miR-34a, their stem cells quickly grew out of control and formed many tumour-like structures, the researchers elucidated.