Toggle light / dark theme

Very interesting since many complex neural diseases also have ties to the brain stem such as Dystonia.


Feb. 22, 2016 — There is a new ground zero for Alzheimer’s Disease, according to a new discovery of a critical but vulnerable region in the brain that appears to be the first place affected by late onset Alzheimer’s disease. It also may be more important for maintaining cognitive function in later life than previously appreciated.

The locus coeruleus is a small, bluish part of the brainstem that releases norepinephrine, the neurotransmitter responsible for regulating heart rate, attention, memory, and cognition. Its cells, or neurons, send branch-like axons throughout much of the brain and help regulate blood vessel activity, says a new review of the scientific literature.

Its high interconnectedness may make it more susceptible to the effects of toxins and infections compared to other brain regions, said lead author Mara Mather.

Breaking the bacteria barriers.


If that field is at just the right magnitude, it will open up pores within the cell membrane, through which DNA can flow. But it can take scientists months or even years to figure out the exact electric field conditions to reversibly unlock a membrane’s pores.

A new microfluidic device developed by MIT engineers may help scientists quickly home in on the electric field “sweet spot” — the range of electric potentials that will harmlessly and temporarily open up membrane pores to let DNA in. In principle, the simple device could be used on any microorganism or cell, significantly speeding up the first step in genetic engineering.

“We’re trying to reduce the amount of experimentation that’s needed,” said Cullen Buie, the Esther and Harold E. Edgerton Associate Professor of mechanical engineering at MIT. “Our big vision for this device and future iterations is to be able to take a process that usually takes months or years, and do it in a day or two.”

Read more

The job advertisement was highly specific: applicants had to be passionate about computer games and live in the UK. Oh, and they also had to be amputees who were interested in wearing a futuristic prosthetic limb.

James Young knew straight away he had a better shot than most. After losing an arm and a leg in a rail accident in 2012, the 25-year-old Londoner had taught himself to use a video-game controller with one hand and his teeth. “How many amputee gamers can there be?” he asked himself.

In the end, more than 60 people replied to the ad, which was looking for a games-mad amputee to become the recipient of a bespoke high-tech prosthetic arm inspired by Metal Gear Solid, one of the world’s best-selling computer games. Designed and built by a team of 10 experts led by London-based prosthetic sculptor Sophie de Oliveira Barata, the £60,000 carbon-fibre limb is part art project, part engineering marvel.

Read more

Great progress by Institute of the McGill University Health Centre has study astrocytes (the star shape brain cells) which play fundamental roles in nearly all aspects of brain function, could be adjusted by neurons in response to injury and disease.


A research team, led by the Research Institute of the McGill University Health Centre (RI-MUHC) in Montreal, has broken new ground in our understanding of the complex functioning of the brain. The research, which is published in the current issue of the journal Science, demonstrates that brain cells, known as astrocytes, which play fundamental roles in nearly all aspects of brain function, could be adjusted by neurons in response to injury and disease. The discovery, which shows that the brain has a far greater ability to adapt and respond to changes than previously believed, could have significant implications on epilepsy, movement disorders, and psychiatric and neurodegenerative disease.

Astrocytes are star-shaped cells in our brain that surround brain neurons, and neural circuits, protecting them from injury and enabling them to function properly – in essence, one of their main roles is to ‘baby-sit’ neurons. Our brain contains billions of cells, each of which need to communicate between each other in order to function properly. This communication is highly dependent on the behaviour of astrocytes. Until now, the mechanisms that create and maintain differences among astrocytes, and allow them to fulfill specialized roles, has remained poorly understood.

“It was believed that astrocytes acquired their properties during the development of the brain and then they were hardwired in their roles,” says senior study’s author Dr. Keith Murai, director of the Centre for Research in Neuroscience at the RI-MUHC, associate professor of the Department of Neurology and Neurosurgery at McGill University. “We have now discovered that astrocytes are actually incredibly flexible and potentially modifiable, which enables them to improve brain function or restore lost potential caused by disease.’’

This really sad news; cancer is showing up among children more often than originally reported. I will admit in my own family that we had our 1st reported case. She is doing amazing and we’re all proud of her. However, I encourage more needs to be done to prevent this from occurring in the most innocent of lives.

Read more

A video about how fast technological progress is going, how much technology has improved the world and the potential for technology to solve our most pressing challenges. Inspired in part by the book Abundance by Peter Diamandis and Steven Kotler, and by the video “Shift Happens 3.0” (also known as “Did You Know”) by Karl Fisch and Scott McLeod: https://www.youtube.com/watch?v=cL9Wu2kWwSY

Among the things mentioned are developments and possibilities within information technology, biotechnology, nanotechnology and artificial intelligence. The video also touches upon how several of these developments are exponential, but it does not get into the realm of technological singularity and the thoughts of people such as Ray Kurzweil, which is the topic of some of my other videos.

The guy who is speaking at the end is Peter Diamandis. The whole talk can be seen here: https://www.youtube.com/watch?v=1KxckI8Ttpw

SOURCES AND JUSTIFICATION FOR CLAIMS