Toggle light / dark theme

New method for tracking single cells; definitely could be interesting for genetic mutation research such as cancer, Parkinson, etc.


As far as the scientists are concerned, the new possibilities that these programs offer should be available to as many researchers around the world as possible. Therefore the software is freely available, and can be downloaded from the following link: http://www.bsse.ethz.ch/csd/software/ttt-and-qtfy.html

Technical obstacles were removed as far as possible. “Our focus was on making the application also available to researchers who do not have background IT know-how,” Schroeder explains. And the application appears to work well: Two high-ranking publications can be traced back to the spyware for cells.

Story Source:

Dark Net v. Law Enforcement — who is winning and who is struggling.


The Dark web is a privileged place for cyber criminals that, under specific conditions, could operate in anonymity.

The United Nation’s Office on Drugs and Crime (UNODC) has published its annual report that contains a specific mention to the illicit trade of goods and drugs in this hidden part of the web.

The crooks seem to be one step ahead many countries’ law enforcement agencies that in many cases are not able to target black markets in the dark web.

SENS has a fund match for its current campaign on lifespan.io, if you are concerned about cancer like me and you want to help directly fund a lab working on solutions please think about donating. smile


There is a month left to go in the SENS crowdfunding campaign that aims to accelerate development of an important component of a universal cancer therapy, a way to block the mechanisms of telomere lengthening that every type of cancer depends upon. The SENS Research Foundation and Lifespan.io volunteers are looking for donors to put up matching funds of a few thousand dollars or more, in order to take that news and that inducement to a number of conferences and other events over the next few weeks. More than 150 people have donated to the campaign to date, and we’d like to triple that number in the next 30 days.

To start things off, I’ll offer up $2,000 of my own funds: the next $2,000 in donations to this SENS cancer research initiative will be matched dollar for dollar. That is a start, and if you can join in to help out, please contact me to let me know. Can you help to make a difference here?

With last week’s $10 million pledge in support of other portions of the SENS rejuvenation research portfolio, we can clearly see that grassroots fundraising works. It lights the way, and as we grow the community and show our determination, that success draws in larger donors. When this is amply demonstrated by the arrival of large amounts of new funding … well, that is precisely the time to pile on and keep up the good work. All major medical research non-profits have several tiers of fundraising, from grassroots to high net work philanthropy, and all of these tiers are essential: they can’t exist without one another. The SENS Research Foundation is transitioning to become a solid organization with a high end tier of fundraising to complement our efforts, and that couldn’t exist without the support of the grassroots. It is a sign that we are winning.

Arthritis sufferers have been offered new hope after scientists grew a ‘living hip’ in the lab which not only replaces worn cartilage but stops painful joints returning.

Researchers in the US have used stem cells to grow cartilage in the exact shape of a hip joint while also genetically engineering the tissue to release anti-inflammatory molecules to fend off the return of arthritis.

The idea is to implant the perfectly shaped cartilage around the joint to extend its life before arthritis has caused too much damage to the bone.

Read more

Researchers at the Stanford University School of Medicine found a way to trick human embryonic stem cells to become pure populations of any of 12 cell types, including bone, heart muscle and cartilage within days.

Scientists at the Stanford University School of Medicine have identified the sets of biological and chemical signals necessary to quickly and efficiently direct human embryonic stem cells. If successful, researchers could grow pure populations of any of 12 cell types, including bone, heart muscle and cartilage within days rather than the weeks or months previously required.

This is key toward clinically useful regenerative medicine – potentially allowing researchers to generate new beating heart cells to repair damage after a heart attack or to create cartilage or bone to reinvigorate creaky joints or heal from trauma.

Read more

Biowire.


Researchers led by microbiologist Derek Lovely say the wires, which rival the thinnest wires known to man, are produced from renewable, inexpensive feedstocks and avoid the harsh chemical processes typically used to produce nanoelectronic materials.

Lovley says, “New sources of electronic materials are needed to meet the increasing demand for making smaller, more powerful electronic devices in a sustainable way.” The ability to mass-produce such thin conductive wires with this sustainable technology has many potential applications in electronic devices, functioning not only as wires, but also transistors and capacitors. Proposed applications include biocompatible sensors, computing devices, and as components of solar panels.

This advance began a decade ago, when Lovley and colleagues discovered that Geobacter, a common soil microorganism, could produce “microbial nanowires,” electrically conductive protein filaments that help the microbe grow on the iron minerals abundant in soil. These microbial nanowires were conductive enough to meet the bacterium’s needs, but their conductivity was well below the conductivities of organic wires that chemists could synthesize.