Toggle light / dark theme

I see many uses for this such as provider services including front office & hospital admissions, security in assessing people in line or trying to gain entry, etc.


Machines are taking over more and more tasks. Ideally, they should also be capable to support the human in case of poor performance. To intervene appropriately, the machine should understand what is going on with the human. Fraunhofer scientists have developed a diagnostic tool that recognizes user states in real time and communicates them to the machine.

The camera firmly focuses on the driver’s eyes. If they are closed for more than one second, an alarm is triggered. This technique prevents the dangerous micro-sleep at the wheel. “It is not always as easy for a machine to detect what state the human is in, as it is in this case,” says Jessica Schwarz from the Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE in Wachtberg, just south of Bonn.

Holistic model feeds real-time diagnosis

Big Data and 3D.


3D printing remains one of those technological areas that holds a great amount of fascination. What began as a type of niche market has expanded rapidly in the past few years to encompass nearly every industry out there, from the medical field to manufacturing.

The outlook is a positive one in terms of 3D printing’s future, with Gartner predicting the amount of spending on 3D printers to exceed more than $13 billion in 2018. While 3D printing has always held a lot of promise, one of the factors truly taking the concept to the next level is big data.

In much the same way that big data has benefited businesses of all types and sizes, it has proven to play a pivotal role in the growth of 3D printing. As more organizations get a firm grasp on how best to use both big data analytics and 3D printing capabilities, the two areas will form a more established and interdependent relationship.

Nice.


When we think of synthetic biology, we often think of engineering a cell to give it some useful function. But SEED 2016 had quite a few speakers working outside of a biological cell. Some broke open cells to utilize just the cellular machinery to create “cell-free” systems. Others showed what could be done inside of the computer (in silico) to improve our understanding and prediction of synthetic gene networks. Here, we’re highlighting SEED speakers who showed how both of these approaches can advance synthetic biology.

Cell-free synthetic biology

Roy Bar-Ziv gave the first keynote at SEED 2016. His group at the Weissman Institute has made tremendous progress toward using cell-free expression that can mimic the behavior of real cells. Over the last 12 years they developed their ‘artificial cells’ using microfluidics and DNA arrayed on 2D substrates as DNA brushes. Each spot of DNA can be programmed the same as DNA in cells, and unlike other cell-free expression setups the microfluidics allows for dynamics.

Listen to famed biogerontolgist Aubrey de Grey explain the OncoSENS approach to curing ALT-Cancer (https://www.lifespan.io/campaigns/sens-control-alt-delete-cancer/) and how this is a vital part of overcoming the ill-effects of aging. This presentation is part of the Designing New Advances conference held by the Institute of Exponential Sciences in the Netherlands.

Read more

Tempus fugit. I’m just about old enough to remember a time in which 2020 was the distant future of science fiction novels, too far away to be thinking about in concrete terms, a foreign and fantastical land in which anything might happen. Several anythings did in fact happen, such as the internet, and the ongoing revolution in biotechnology that has transformed the laboratory world but leaks into clinics only all too slowly. Here we are, however, close enough to be making plans and figuring out what we expect to be doing when the third decade of the 21st century gets underway. The fantastical becomes the mundane. We don’t yet have regeneration of organs and limbs, or therapies to greatly extend life, but for these and many other staples of golden age science fiction, the scientific community has come close enough to be able to talk in detail about the roads to achieving these goals.

Of all the things that researchers might achieve with biotechnology in the near future, control over aging is by far the most important. Aging is the greatest cause of death and suffering in the world, and none of us are getting any younger. That may change, however. SENS, the Strategies for Engineered Negligible Senescence, is a synthesis of the scientific view of aging as an accumulation of specific forms of cell and tissue damage, pulling in a century of evidence from many diverse areas of medical science to support this conclusion. Aging happens because the normal operation of our cellular biochemistry produces damage, wear and tear at the level of molecules and molecular structures, and some of that damage accumulates to cause failure of tissues and organs, and ultimately death.

Read more

Philadelphia, PA, USA / Mexico City, Mexico — Bioquark, Inc., (www.bioquark.com) a life sciences company focused on the development of novel bioproducts for complex regeneration, disease reversion, and aging, and RegenerAge SAPI de CV, (www.regenerage.clinic/en/) a clinical company focused on translational therapeutic applications of a range of regenerative and rejuvenation healthcare interventions, have announced a collaboration to focus on novel combinatorial approaches in human disease and wellness. SGR-Especializada (http://www.sgr-especializada.com/), regulatory experts in the Latin American healthcare market, assisted in the relationship.

regenerage

“We are very excited about this collaboration with RegenerAge SAPI de CV,” said Ira S. Pastor, CEO, Bioquark Inc. “The natural synergy of our cellular and biologic to applications of regenerative and rejuvenative medicine will make for novel and transformational opportunities in a range of degenerative disorders.”

As we close in on $7 trillion in total annual health care expenditures around the globe ($1 trillion spent on pharmaceutical products; $200 billion on new R&D), we are simultaneously witnessing a paradoxical rise in the prevalence of all chronic degenerative diseases responsible for human suffering and death.

With the emergence of such trends including: personalization of medicine on an “n-of-1” basis, adaptive clinical design, globalization of health care training, compassionate use legislative initiatives for experimental therapies, wider acceptance of complementary medical technologies, and the growth of international medical travel, patients and clinicians are more than ever before, exploring the ability to access the therapies of tomorrow, today.

recovering patient

The estimate of the current market size for procedural medical travel, defined by medical travelers who travel across international borders for the purpose of receiving medical care, is in the range of US $40–55 billion.

Additionally, major clinical trial gaps currently exist across all therapeutic segments that are responsible for human suffering and death. Cancer is one prime example. As a leading cause of morbidity and mortality worldwide for many decades, today there are approximately 14 million new cases diagnosed each year, with over 8 million cancer related deaths annually. It is estimated that less than 5% of these patients, take the initiative to participate in any available clinical studies.

“We look forward to working closely with Bioquark Inc. on this exciting initiative,” said Dr. Joel Osorio, Chief of Clinical Development RegenerAge SAPI de CV. “The ability to merge cellular and biologic approaches represents the next step in achieving comprehensive regeneration and disease reversion events in a range of chronic diseases responsible for human suffering and death.”

bioquarklogo

About Bioquark, Inc.
Bioquark Inc. is focused on the development of natural biologic based products, services, and technologies, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing both biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

About RegenerAge SAPI de CV

RegenerAge SAPI de CV is a novel clinical company focused on translational therapeutic applications, as well as expedited, experimental access for “no option” patients, to a novel range of regenerative and reparative biomedical products and services, with the goal of reducing human degeneration, suffering, and death.

Nice!


IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could help enable physicians to detect diseases such as cancer before symptoms appear.

As reported today in the journal Nature Nanotechnology (“Nanoscale Lateral Displacement Arrays for Separation of Exosomes and Colloids Down to 20nm”), the IBM team’s results show size-based separation of bioparticles down to 20 nanometers (nm) in diameter, a scale that gives access to important particles such as DNA, viruses and exosomes. Once separated, these particles can be analyzed by physicians to potentially reveal signs of disease even before patients experience any physical symptoms and when the outcome from treatment is most positive. Until now, the smallest bioparticle that could be separated by size with on-chip technologies was about 50 times or larger, for example, separation of circulating tumor cells from other biological components.

nanoDLD

Imagine you wake up one morning burning to make the great physicist Max Planck’s face out of copper. (Just go with it.) Sure, you could sculpt it, but there’s a better way. Cut a flat copper sheet into a half-oval, and take a triangle out of the center of its straight edge. Divide it into smaller triangles, bend the sheet so that the two sides of the big triangle touch—and violà! A sheet of flat copper triangles has morphed to match every nook and cranny of Planck’s face. No sculpting required.

If that sounds like magic … well, that’s understandable, because we left a few steps out. Computer scientist Keenan Crane from Carnegie Mellon University actually did this with real copper, and you can see a computer model of the final product at the top of this article. Making Planck’s face wasn’t the point, of course: When Crane cut the sheet into carefully-designed triangles, he brought it into a class of materials known as auxetics, whose curious and complex properties have excited researchers for decades. Someday, auxetics could improve highway shock absorbers, form more comfortable and versatile shoes, and line veins that thicken when expanding.

At least, that’s what the grant applications say. “People give a lot of lip service to how it’s gonna change the world, in terms of curing cancer,” says Crane. “But at this stage people are still trying to figure out just basic questions.” Auxetics all started with a 1987 Science paper by engineer and professor Roderic Lakes. He reported a new kind of polymer foam that contradicted common sense. It expanded in one direction when stretched in another, and contracted in one direction when squeezed in another.

Read more

Apple’s new app to help you do deep breathing to improve your mind, intelligence, and over all health.


APPLE is set to launch a new app that aims to make you healthier through just a few minutes a day of deep breathing.

It is based on the growing field of research proving the biological benefits, including genetic changes, of mind-body medicine.

The Breathe app will be released for the Apple Watch later this year and it will prompt people to take a few minutes every day to stop and focus on their breathing, using the heart-rate sensor in the Watch to monitor the reaction.