Toggle light / dark theme

Researchers have successfully used spinach leaves to build functioning human heart tissue, complete with veins that can transport blood.

To tackle a chronic shortage of donor organs, scientists have been working on growing various tissues and even whole organs in the lab. But culturing a bunch of cells is only part of the solution — they simply won’t thrive without a constant blood supply.

It’s notoriously difficult to build a working network of fine blood vessels (also called vasculature), especially when you get down to capillaries, which are only 5 to 10 micrometres wide. Blood vessels transport the oxygen and nutrients that a lab-grown tissue sample needs to grow and function.

Read more

To put it mildly, sequencing and building a genome from scratch isn’t cheap. It’s sometimes affordable for human genomes, but it’s often prohibitively expensive (hundreds of thousands of dollars) whenever you’re charting new territory — say, a specific person or an unfamiliar species. A chromosome can have hundreds of millions of genetic base pairs, after all. Scientists may have a way to make it affordable across the board, however. They’ve developed a new method, 3D genome assembly, that can sequence and build genomes from the ground up for less than $10,000.

Where earlier approaches saw researchers using computers to stick small pieces of genetic code together, the new technique takes advantages of folding maps (which show how a 6.5ft long genome can cram into a cell’s nucleus) to quickly build out a sequence. As you only need short reads of DNA to make this happen, the cost is much lower. You also don’t need to know much about your sample organism going in.

As an example of what’s possible, the team completely assembled the three chromosomes for the Aedes aegypti mosquito for the first time. More complex organisms would require more work, of course, but the dramatically lower cost makes that more practical than ever. Provided the approach finds widespread use, it could be incredibly valuable for both biology and medicine.

Read more

Are robots coming for your job?

Although technology has long affected the labor force, recent advances in and robotics are heightening concerns about automation replacing a growing number of occupations, including highly skilled or “knowledge-based” .

Just a few examples: self-driving technology may eliminate the need for taxi, Uber and truck drivers, algorithms are playing a growing role in journalism, robots are informing consumers as mall greeters, and medicine is adapting robotic surgery and artificial intelligence to detect cancer and heart conditions.

Read more

More than 45 million couples worldwide grapple with infertility, but current standard methods for diagnosing male infertility can be expensive, labor-intensive, and require testing in a clinical setting.

Cultural and social stigma, and lack of access in resource-limited countries, may prevent men from seeking an evaluation. Investigators at Harvard-affiliated Brigham and Women’s Hospital (BWH) and Massachusetts General Hospital (MGH) set out to develop a home-based diagnostic test that could be used to measure semen quality with a smartphone-based device. New findings by the team indicating that the analyzer can identify abnormal semen samples based on sperm concentration and motility criteria with approximately 98 percent accuracy are published online in today’s Science Translational Medicine.

“We wanted to come up with a solution to make male infertility testing as simple and affordable as home pregnancy tests,” said Hadi Shafiee, a principal investigator in the Division of Engineering in Medicine and Renal Division of Medicine at BWH. “Men have to provide semen samples in these rooms at a hospital, a situation in which they often experience stress, embarrassment, pessimism, and disappointment. Current clinical tests are lab-based, time-consuming, and subjective. This test is low-cost, quantitative, highly accurate, and can analyze a video of an undiluted, unwashed semen sample in less than five seconds.”

Read more

Every minute in the United States, 30 people require a blood transfusion. That equates to a lot of blood, and the problem is that not enough people donate. This bottleneck has long been an issue for medicine, and so many have been trying to find a way to artificially create large volumes to meet this demand.

A team of researchers from the University of Bristol and NHS Blood and Transplant may have finally cracked it. They’ve made a major breakthrough in the process of mass producing red blood cells, in what could technically be an unlimited supply of the stuff. While they now have a biological way of achieving this, they now need the manufacturing technology on a large enough scale in order to mass produce it.

Scientists have been able to create artificial blood before, but these earlier methods have been incredibly inefficient. They worked by taking stem cells, and then directly inducing them to form red blood cells. By doing this, they could create maybe 50,000 cells in one go, far short of the trillions typically needed for a blood transfusion.

Read more

Roboticists frequently turn to nature for inspiration for their inventions, reverse engineering the traits that evolution has developed over millennia. Others are taking a shortcut by simply integrating modern technology with living animals.

The idea may seem crazy, but animals and machines are not so different. Just as a network of wires carry electrical signals between a robot’s sensors, processing units and motors, the flow of action potentials around our nervous system connects our sensory organs, brain and muscles.

But while there are similarities, the natural world has come up with some intricate solutions to problems that engineers are nowhere near replicating in silicon. That has prompted some scientists to try and piggyback on evolution’s innovations by building part-animal, part-machine cyborgs. Here’s a rundown of some of the most eye-catching examples.

Read more