Toggle light / dark theme

A new way to treat brain cancer with our own immune cells.


Injecting genetically modified immune cells directly into the brain and spinal fluid has had remarkable effects on a deadly brain cancer

Glioblastoma is a particularly virulent form of brain cancer. Around 20,000 people in the United States are diagnosed each year and the disease typically has poor survival rates. In a new case reported in the New England Journal of Medicine, a man has undergone experimental CAR-T therapy to treat the condition. CAR-T therapy is a branch of immunotherapy, the field taking cancer treatment by storm, and involves infusing genetically modified T cells back into a patient to target cancer cells.

A new hope

A synthetic cardiac stem cell (left) mirroring a real cardiac stem cell (right), offering therapeutic benefits without the associated risks (credit: Alice Harvey/NC State University)

Scientists have created the first synthetic version of a cardiac stem cell, offering therapeutic benefits comparable to those from natural stem cells — but without the risks and limitations, according to researchers from North Carolina State University, the University of North Carolina at Chapel Hill, and First Affiliated Hospital of Zhengzhou University in China.

The newly created synthetic stem cells cannot replicate. That means they could reduce some of the risks associated with natural stem-cell therapies — including tumor growth and immune rejection. The synthetic stem calls would also avoid the fragility of natural stem cells, which require careful storage and a multi-step process of typing and characterization before they can be used.

Read more

The last of the fun videos about the immune system and how it works.


THE FINAL SHOWDOWN! This is the last episode on the immune system and also the very last episode of Crash Course Anatomy & Physiology. In it, Hank explains how the cellular immune response uses helper, cytotoxic, and regulatory T cells to attack body cells compromised by pathogens. He also explores how cytokines activate B and T cells, and what happens if your immune system goes rogue and starts causing autoimmune trouble.

Crash Course A&P Posters: http://store.dftba.com/products/crashcourse-anatomy-and-physiology-poster

Table of Contents
Helper, Cytotoxic and Regulatory T Cells Attack Compromised Body Cells 4:08.
Cytokines Activate B and T Cells 5:00
When Your Immune System Goes Rogue 6:15
Autoimmune Trouble 7:27

***

Crash Course is on Patreon! You can support us directly by signing up at http://www.patreon.com/crashcourse

Read more

Looks like hacking might be alot older then we thought lmao.


Biologists at UC San Diego have documented for the first time how very large viruses reprogram the cellular machinery of bacteria during infection to more closely resemble an animal or human cell—a process that allows these alien invaders to trick cells into producing hundreds of new viruses, which eventually explode from and kill the cells they infect.

In a paper published in the January 13 issue of Science, the researchers conducted a series of experiments that allowed them to view in detail what happens inside as the invading viruses replicate.

“Scientists have been studying viruses for a hundred years, but we’ve never seen anything like this before,” said Joe Pogliano, a professor of who headed the research team. “Every experiment produced something new and exciting about this system.”

Over millions of years retroviruses have been incorporated into our human DNA, where they today make up almost 10 per cent of the total genome. A research group at Lund University in Sweden has now discovered a mechanism through which these retroviruses may have an impact on gene expression. This means that they may have played a significant role in the development of the human brain as well as in various neurological diseases.

Retroviruses are a special group of viruses including some which are dangerous, such as HIV, while others are believed to be harmless. The viruses studied by Johan Jakobsson and his colleagues in Lund are called endogenous retroviruses (ERV) as they have existed in the human genome for millions of years. They can be found in a part of DNA that was previously considered unimportant, so called junk-DNA — a notion that researchers have now started to reconsider.

“The genes that control the production of various proteins in the body represent a smaller proportion of our DNA than endogenous retroviruses. They account for approximately 2 per cent, while retroviruses account for 8–10 per cent of the total genome. If it turns out that they are able to influence the production of proteins, this will provide us with a huge new source of information about the human brain,” says Johan Jakobsson.

Read more