Toggle light / dark theme

Developing wearable, automated tech to prevent and treat wound infection

🛟🧬🧫🩹⚙️


Wound infections are common combat injuries and can take otherwise able-bodied personnel out of operations and/or result in severe medical complications. Current standard of care relies on complicated and often time-consuming tests to identify the specific infection-inducing pathogens that caused the wound infection. Therapeutic treatments rely on broad-spectrum and high-dose antibiotics alongside surgical excision – which are not pathogen specific, drive antibiotic resistance, can have toxic side effects, require advanced medical training, and can result in high treatment costs and burden on patients. A game-changing approach to managing infection of combat wounds, particularly one that can be applied autonomously, would benefit warfighter readiness and resilience.

The BioElectronics to Sense and Treat (BEST) program seeks to meet this need by developing wearable, automated technologies that can predict and prevent a wound infection before it can occur, and to eliminate an infection if it has already taken hold. To achieve this, DARPA is seeking researchers to develop novel bioelectronic smart bandages comprised of wound infection sensor and treatment modules. The sensors should be high-resolution and provide real-time, continual monitoring of wounds based on, for example, the person’s immune state and the collection of bacteria that live in and around a wound. Data from these sensors will be used to predict if a wound will fail to heal due to infection, diagnose the infection, and regulate administration of targeted treatments – using closed-loop control to prevent or resolve infection for improved wound healing.

“Given that infection initiates at the time of injury and can take hold before aid arrives, particularly in austere environments, the earlier we can deploy these technologies, the bigger impact they will have,” noted Dr. Leonard Tender, BEST program manager. “Even if medivac occurs immediately, without the ability to prevent infection, the downstream care required to treat the surge of wound infections resulting from a large-scale combat operation could easily overwhelm care capacity.”

569,012 Americans Exposed As Massive Data Breach Reveals Names, Financial Account Numbers, Credit and Debit Card Numbers, Security Codes, PINs and More

A major cybersecurity incident has exposed sensitive personal, medical and financial records of more than half a million Americans.

In a data breach notification, the Office of the Maine Attorney General says the California-based non-profit organization NorthBay Healthcare Corporation experienced an external system breach affecting 569,012 Americans.

In a notice sent to affected people, NorthBay Health says an unauthorized entity gained access to the firm’s computer systems between January 11th, 2024 and April 1st of the same year.

‘Gut-on-chip’ can predict immunotherapy outcomes for melanoma patients

A team of researchers has developed a “gut-on-chip” (a miniature model of the human intestine on a chip-sized device) capable of reproducing the main features of intestinal inflammation and of predicting the response of melanoma patients to immunotherapy treatment. The results have just been published in Nature Biomedical Engineering.

The interaction between microbiota and has long been known. It is the result of both systemic effects, i.e., the elicited in the entire body by immunotherapy, and local processes, especially in the gut, where most of the bacteria that populate our body live. However, the latter can only be studied in animal models, with all their limitations.

Indeed, there is no clinical reason to subject a patient receiving immunotherapy for melanoma to colonoscopy and colon biopsy. Yet intestinal inflammation is one of the main side effects of this treatment, often forcing the therapy to be discontinued.

New smart jacket uses AI to prevent overheating and discomfort

In Europe alone, approximately 2 million people live with chronic inflammatory bowel diseases (IBD), and their incidence has been rising steadily in recent decades. However, a small proportion of the European population carries a genetic variant that provides natural protection against IBD.

A newly published study in the journal eBioMedicine explores how this protective variant can be leveraged to develop modern therapies, demonstrating the potential of evolutionary medicine in addressing chronic diseases of the modern era.

The study, led by the Institute of Clinical Molecular Biology (IKMB) at Kiel University, brought together researchers from genetics, medicine, and archaeology.

The overlooked astrocyte: Star-shaped brain cells may form specialized networks for reward learning

Most neuroscience research carried out up to date has primarily focused on neurons, the most renowned type of cell in the human brain. As a result, the unique functions of other brain cell types are less understood and have often been entirely overlooked.

Researchers at Instituto Cajal (CSIC), the Autonomous University of Madrid and Institute de Salud Carlos III recently carried out a study aimed at better understanding the contributions of astrocytes, a class of star-shaped glial cells found in the brain and spinal cord, to key mental functions. Their findings, published in Nature Neuroscience, unveiled the existence of astrocytic ensembles, specialized subsets that appear to be active during reward-driven behaviors.

“It is known that astrocytes are a heterogeneous cell type in their molecular and gene expression signatures, morphology and origin,” Marta Navarrete, senior author of the paper, told Medical Xpress.

Atomic traffic control—researchers develop novel technology for more precise quantum sensors

Quantum sensors can be significantly more precise than conventional sensors and are used for Earth observation, navigation, material testing, and chemical or biomedical analysis, for example. TU Darmstadt researchers have now developed and tested a technique that makes quantum sensors even more precise.

What is behind this technology? Quantum sensors, based on the wave nature of , use quantum interference to measure accelerations and rotations with extremely high precision. This technology requires optimized beam splitters and mirrors for atoms. However, atoms that are reflected in unintentional ways can significantly impair such measurements.

The scientists therefore use specially designed as velocity-selective atom , which reflect the desired atoms and allow parasitic atoms to pass through. This approach reduces the noise in the signal, making the measurements much more precise. The research is published in the journal Physical Review Research.