Toggle light / dark theme

An artificial neural network that’s made entirely from DNA and mimics the way the brain works has been created by scientists in the lab.

The test tube artificial intelligence can solve a classic machine learning problem by correctly identifying handwritten numbers.

The work is a significant step in demonstrating the ability to program AI into man-made organic circuits, scientists claim.

Read more

The brain is about 10% neurons and 90% neural network support cells, called neuroglia, or glial cells, which surround and insulate neurons, protect them from damage, and supply them with nutrients and oxygen. Neuroglia are often found to malfunction in neurological disorders such as Alzheimer’s Disease or amyotrophic lateral sclerosis (ALS).


Research studies indicate that telomerase gene therapy may not only reverse Alzheimer’s Disease and other dementias, but it may even protect people from developing such diseases.

This is indeed hopeful news for the nearly 50 million victims of Alzheimer’s or related dementia worldwide as well as for the millions of aging people with Parkinson’s and aging-related mental decline.

Telomerase gene therapy appears to rejuvenate microglial (the immune cells of the brain) cells in Alzheimer’s Disease according to promising research study data.

Read more

CTRL-labs’s noninvasive neural interface allows people to control computers, robots and applications by tracking electrical activity generated when a person thinks about moving. This electrical activity is detected by an armband outfitted with sensors and decoded by a computer. The team thinks the technology will initially be used for augmented and virtual reality, but CTRL-labs is already experimenting with medical applications.

Read more

CRISPR has been heralded as one of the most important breakthroughs in modern science, but there could be a hidden and potentially dangerous side effect to the wonders of its genetic editing technology, a new study reveals.

A systematic investigation of CRISPR/Cas9 genome editing in mouse and human cells has discovered that the technique appears to frequently cause extensive mutations and genetic damage that the researchers say wouldn’t be detected by existing DNA tests.

“This is the first systematic assessment of unexpected events resulting from CRISPR/Cas9 editing in therapeutically relevant cells,” explains geneticist Allan Bradley from the Wellcome Sanger Institute in the UK.

Read more

Exciting new research from Yale University has revealed a new method that could potentially objectively diagnose if a person is suffering through the early stages of Alzheimer’s disease using a non-invasive PET scan.

A major roadblock slowing down effective Alzheimer’s research is our inability to easily, or clearly, diagnose the disease at its early stages. Several blood tests are being explored that can identify biomarkers signaling the early presence of the disease, but nothing has proved conclusive enough to move into general clinical use.

The new Yale University innovation uses PET imaging technology to evaluate cognitive decline by effectively measuring how much synaptic loss or degradation has occurred in a patient’s brain. To quantify a person’s “synaptic density” the researchers homed in on a protein called SV2A. This protein is found in nearly all healthy synapses, but as those connections degrade, so does the presence of SV2A.

Read more