Toggle light / dark theme

Scientists find powerful potential weapon to overcome antibiotic resistance

Staphylococcus aureus bacteria are a major cause of serious infections that often persist despite antibiotic treatment, but scientists at the UNC School of Medicine have now discovered a way to make these bacteria much more susceptible to some common antibiotics.

The scientists, in a study published in Cell Chemical Biology, found that adding molecules called rhamnolipids can make aminoglycoside antibiotics, such as tobramycin, hundreds of times more potent against S. aureus — including the strains that are otherwise very hard to kill. The rhamnolipids effectively loosen up the outer membranes of S. aureus cells so that aminoglycoside molecules can get into them more easily.

“There’s a great need for new ways to kill bacteria that tolerate or resist standard antibiotics, and to that end we found that altering membrane permeability to induce aminoglycoside uptake is an extremely against S. aureus,” said study senior author Brian Conlon, Ph.D., an assistant professor in the department of microbiology and immunology at the UNC School of Medicine.

This Startup Created a Marijuana Breathalyzer

If a police officer suspects you’ve had too much to drink before getting behind the wheel of your car, they can use a breathalyzer to estimate your blood alcohol level on the spot.

But if a cop thinks you’re driving stoned, they currently don’t have any evidence-based way to immediately confirm their suspicions — they typically have to rely on subjective roadside sobriety tests.

Now, though, Canadian startup SannTek Labs says it’s developed a marijuana breathalyzer — and it’s caught the eye of top startup accelerator Y Combinator.

Scientists reverse aging process in rat brain stem cells

New research, published today in Nature, reveals how increasing brain stiffness as we age causes brain stem cell dysfunction, and demonstrates new ways to reverse older stem cells to a younger, healthier state.

The results have far reaching implications for how we understand the ageing process, and how we might develop much-needed treatments for age-related diseases.

As our bodies age, muscles and joints can become stiff, making everyday movements more difficult. This study shows the same is true in our brains, and that age-related brain stiffening has a significant impact on the function of brain stem cells.

Future Bioweapons Could Kill People With Specific DNA

In the future, we may have to deal with biological weapons that target specific groups of people, passing over everyone else.

That’s according to a new report out of Cambridge University’s Centre for the Study of Existential Risk reviewed by The Telegraph. In it, the Cambridge researchers argue that world governments have failed to prepare for futuristic weapons based on advanced technology like artificial intelligence and genetic manipulation — or even a killer pathogen designed to kill only people of a particular race.

How a one-time CRISPR shot could obliterate lower back pain

Today [August 13] the US National Academy of Sciences is hosting the first meeting of the International Commission on the Clinical Use of Human Germline Genome Editing in Washington, to discuss controversial applications of CRISPR to human eggs, sperm, or fertilized ova, in the wake of Chinese researcher He Jiankui announcing the birth of CRISPR twins after a similar meeting in 2017 (See Do China’s controversial CRISPR babies illustrate the need for an undo button?)

Although only one clinical trial is up-and-running for CRISPR to treat body cells, with an initial patient making the media rounds just last week to discuss her cells doctored to counter sickle cell disease, many other applications are in preclinical testing — animal models and human cells and organoids. And they’re not restricted to rare diseases.

Imagine a single injection that quells the inflammation behind lower back pain — perhaps forever. CRISPR may make that possible by dampening the immune system’s cytokine signals, according to a report in the July issue of Human Gene Therapy.

Aubrey de Grey at Ending Age-Related Diseases 2019

Today, we’re releasing another keynote from Ending Age-Related Diseases 2019, our highly successful two-day conference that featured talks from leading researchers and investors, bringing them together to discuss the future of aging and rejuvenation biotechnology.

In his talk, Estimating the True Complexity of Comprehensive Rejuvenation, the famous Aubrey de Grey of SENS Research Foundation discussed the intricacies of creating a complete rejuvenation biotechnology framework, including the differing rates of age-related damage and the ramifications of the extensive crosstalk between different types of this damage.

3D-printing organs moves a few more steps closer to commercialization

New successes in printing vascular tissue from living cells point to the accelerating pace of development of 3D-printing tissue — and eventually the ability to manufacture organs from small samples of cells.

Late last month Prellis Biologics announced an $8.7 million round of funding and some significant advancements that point the way forward for 3D-printed organs while a company called Volumetric Bio based on research from a slew of different universities unveiled significant progress of its own earlier this year.

The new successes from Prellis have the company speeding up its timeline to commercialization, including the sale of its vascular tissue structures to research institutions and looking ahead to providing vascularized skin grafts, insulin-producing cells and a vascular shunt made from the tissue of patients who need dialysis, according to an interview with Melanie Matheu, Prellis’ chief executive officer and co-founder.

/* */