Toggle light / dark theme

Longevity technology number one, according to the Longevity Impact Forum rating, proven by Patient zero.


Liz Parrish, CEO of BioViva USAa short clip from her gene therapy that she took in 2015 against biological aging. This is the first step to curing diseases like Alzheimer’s disease, heart disease, kidney failure and cancer. If we work toward this goal quickly we could save almost 8 billion people from inhumane and expensive deaths.
https://www.BioViva-Science.com
https://www.Integrated-Health-Systems.com

Engage with us; Like, Follow, Share, Subscribe, Comment:

In his 1971 State of the Union address, president Richard Nixon promised to kick off what would soon come to be known as the War on Cancer, asking congress for a $100 million appropriation to launch a campaign for finding a cure. “The time has come in America when the same kind of concentrated effort that split the atom and took man to the moon should be turned toward conquering this dread disease,” he said. “Let us make a total national commitment to achieve this goal.”


Welcome to the War on Aging, where death is optional.

Read more

We characterize a novel probe binding-site polymorphism detectable solely by melt curve analysis using the Roche LightCycler HSV 1/2 analyte-specific reagent real-time PCR assay. The frequencies of this novel (47°C) and previously described intermediate (60 to 62°C) melt curves were 0.016% and 4.9%, respectively.

The clinical spectrum of herpes simplex virus (HSV-1, HSV-2) infection ranges from subclinical mucosal shedding to vesicular or ulcerative lesions of skin and mucous membranes, hepatitis, keratitis, pneumonitis, sepsis, and meningoencephalitis. For laboratory diagnosis, laborious cell culture techniques have been largely supplanted with real-time PCR (qPCR) due to marked improvements in test sensitivity and turnaround time. Various laboratory-developed and commercially available qPCR products (analyte-specific reagents [ASR]; FDA approved) exist. In the United States, the LightCycler HSV 1/2 ASR real-time PCR assay (HSV qPCR; Roche Diagnostics, Indianapolis, IN) is commonplace, being used by about 30% of clinical laboratories according to a recent College of American Pathologists (CAP) participant summary.

Read more

Physicians making life-and-death decisions about organ transplants, cancer treatments or heart surgeries typically don’t give much thought to how artificial intelligence might help them. And that’s how researchers at Carnegie Mellon University say clinical AI tools should be designed—so doctors don’t need to think about them.

A surgeon might never feel the need to ask an AI for advice, much less allow it to make a for them, said John Zimmerman, the Tang Family Professor of Artificial Intelligence and Human-Computer Interaction in CMU’s Human-Computer Interaction Institute (HCII). But an AI might guide decisions if it were embedded in the decision-making routines already used by the clinical team, providing AI-generated predictions and evaluations as part of the overall mix of information.

Zimmerman and his colleagues call this approach “Unremarkable AI.”

Read more

Biomedical application of quercetin (QT) as an effective flavonoid has limitations due to its low bioavailability. Superparamagnetic iron oxide nanoparticle (SPION) is a novel drug delivery system that enhances the bioavailability of quercetin. The effect of short time usage of quercetin on learning and memory function and its signaling pathways in the healthy rat is not well understood. The aim of this study was to investigate the effect of free quercetin and in conjugation with SPION on learning and memory in healthy rats and to find quercetin target proteins involved in learning and memory using Morris water maze (MWM) and computational methods respectively. Results of MWM show an improvement in learning and memory of rats treated with either quercetin or QT-SPION. Better learning and memory functions using QT-SPION reveal increased bioavailability of quercetin. Comparative molecular docking studies show the better binding affinity of quercetin to RSK2, MSK1, CytC, Cdc42, Apaf1, FADD, CRK proteins. Quercetin in comparison to specific inhibitors of each protein also demonstrates a better QT binding affinity. This suggests that quercetin binds to proteins leading to prevent neural cell apoptosis and improves learning and memory. Therefore, SPIONs could increase the bioavailability of quercetin and by this way improve learning and memory.

Read more

Circa 1998


CELL BIOLOGY
F or cells, aging and cancer are often opposite sides of a genetic coin: With “heads,” cells will eventually stop dividing, reaching a permanently quiescent stage called senescence, as do normal human cells in lab cultures. With “tails,” the cells with genetic defects can become immortal and never stop dividing—a common characteristic of cultured cancer cells. Now, a group at Baylor College of Medicine in Houston has found a gene that may help determine which side the coin lands on.

![Figure][1]/img.

Read more

Researchers have developed a method that could drastically accelerate the search for new drugs to treat mental health disorders such as schizophrenia.

Mental health disorders are the leading cause of disability worldwide, accounting for 31% of total years lived with disability. While our understanding of the biology behind these disorders has increased, no new neuropsychiatric drugs with improved have been developed in the last few decades, and most existing treatments were found through luck.

This is mainly because doctors can’t take brain tissue samples from in the same way that they are able to do a biopsy on a cancer tumour elsewhere in the body for example, so it’s difficult for researchers to understand exactly what to target when designing new neuropsychiatric drugs.

Read more

Induced pluripotent stem (iPS) cells are among the most important tools in modern biomedical research, leading to new and promising possibilities in precision medicine. To create them requires transforming a cell of one type, such as skin, into something of a blank slate, so it has the potential to become virtually any other kind of cell in the body, useful for regenerative therapies for everything from heart disease to diabetes.

However, current methods to induce pluripotency are inefficient: In a batch of 100 cells slated for reprogramming, only five or so complete the transition. A new study published today in Cell Reports by a team of researchers at the University of Wisconsin-Madison’s Wisconsin Institute for Discovery (WID) and School of Medicine and Public Health could improve that efficiency.

It describes combined laboratory and computational methods that lead to better completion of pluripotency, a faster process, and improved understanding of how cells become reprogrammed from one cell type to another, for instance, transforming a skin cell to a cardiac cell. And it includes some surprises, the authors say.

Read more