Toggle light / dark theme

As we age, the reduced turnover of our cells means we can lose control over how our skin ages. Epidermal stem cells needed to create healthy new skin are significantly reduced and function less efficiently. A discovery based on promising plant stem cell research may allow you to regain control.

Scientists have found that a novel extract derived from the stem cells of a rare apple tree cultivated for its extraordinary longevity shows tremendous ability to rejuvenate aging skin. By stimulating aging skin stem cells, this plant extract has been shown to lessen the appearance of unsightly wrinkles. Clinical trials show that this unique formulation increases the longevity of skin cells, resulting in skin that has a more youthful and radiant appearance.

Read more

A new publication highlights how the complex interaction of NAD+ and cellular senescence pathways may complicate proposed anti-aging therapies that boost NAD+ using precursors.

What are epigenetic alterations?

One of the proposed reasons we age is the changes to gene expression that our cells experience as we get older; these are commonly called epigenetic alterations. These alterations harm the fundamental functions of our cells and can increase the risk of cancer and other age-related diseases.

Read more

Although NIST has now published the data needed to generate match statistics for NGS-based profiles, other hurdles must still be cleared before the new technology sees widespread use in forensics. For instance, labs will have to develop ways to manage the greater amounts of data produced by NGS. They will also have to implement operating procedures and quality controls for the new technology. Still, while much work remains, said Peter Vallone, the research chemist who leads NIST’s forensic genetics research, “We’re laying the foundation for the future.”


DNA is often considered the most reliable form of forensic evidence, and this reputation is based on the way DNA experts use statistics. When they compare the DNA left at a crime scene with the DNA of a suspect, experts generate statistics that describe how closely those DNA samples match. A jury can then take those match statistics into account when deciding guilt or innocence.

These match statistics are reliable because they’re based on rigorous scientific research. However, that research only applies to DNA fingerprints, also called DNA profiles, that have been generated using current technology. Now, scientists at the National Institute of Standards and Technology (NIST) have laid the statistical foundation for calculating match statistics when using Next Generation Sequencing, or NGS, which produces DNA profiles that can be more useful in solving some crimes. This research, which was jointly funded by NIST and the FBI, was published in Forensic Science International: Genetics.

“If you’re working criminal cases, you need to be able to generate match statistics,” said Katherine Gettings, the NIST biologist who led the study. “The data we’ve published will make it possible for labs that use NGS to generate those statistics.”

For more information about this assembly, please note the NCBI resources:

http://www.ncbi.nlm.nih.gov/genome/51

The Human Cell Atlas (HCA) is a global collaboration to map and characterize all cells in a healthy human body: cell types, numbers, locations, relationships, and molecular components. It will require advances in single-cell RNA sequencing, image-based transcriptomics and proteomics, tissue handling protocols, data analysis, and more. Once complete, it will be a fundamental resource for scientists, allowing them to better understand how healthy cells work, and what goes wrong when disease strikes.

The idea for the HCA grew from an enthusiastic scientific community, and represents a collaborative effort to increase the impact of single-cell biology by federating results from different organs, cell types, experimental approaches, and countries, without suppressing the dynamism of individual communities and projects. The HCA project welcomes participation by scientists, physicians, and engineers around the world. CZI joins groups such as the Wellcome Trust, the European Bioinformatics Institute (EMBL-EBI), the Broad Institute, the Sanger Institute, and UC Santa Cruz to support this work. We are supporting the HCA through a variety of mechanisms, including:

Read more

This directory contains the Sierra Leone 2014 (G3683/KM034562.1/eboVir3)

Assembly of the Ebola virus 2014 genome

(eboVir3, West Africa 01 June 2014 EBOV/G3683/KM034562.1).

For more information about this assembly, please note the NCBI resources:

http://www.ncbi.nlm.nih.gov/genome/4887

Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared (NIR) pulsed lasers, resulting in a 10,000 times reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. Researchers present the first experimental demonstration of a waveguide-integrated DLA, designed using a photonic inverse design approach. These on-chip devices accelerate sub-relativistic electrons of initial energy 83.4 keV by 1.21 keV over 30 µm, providing peak acceleration gradients of 40.3 MeV/m. This progress represents a significant step towards a completely integrated MeV-scale dielectric laser accelerator.

Dielectric laser accelerators have emerged as a promising alternative to conventional RF accelerators due to the large damage threshold of dielectric materials the commercial availability of powerful NIR femtosecond pulsed lasers, and the low-cost high-yield nanofabrication processes which produce them. Together, these advantages allow DLAs to make an impact in the development of applications such as tabletop free-electron-lasers, targeted cancer therapies, and compact imaging sources.

They have designed and experimentally verified the first waveguide-integrated DLA structure. The design of this structure was made possible through the use of photonics inverse design methodologies developed by the team members. The fabricated and experimentally demonstrated devices accelerate electrons of an initial energy of 83.4 keV by a maximum energy gain of 1.21 keV over 30 µm, demonstrating acceleration gradients of 40.3 MeV/m. In this integrated form, these devices can be cascaded to reach MeV-scale energies, capitalizing on the inherent scalability of photonic circuits. Future work will focus on multi-stage demonstrations, as well as exploring new design and material solutions to obtain larger gradients.

Read more

Alphabet, Inc., the parent company of Google, plans to develop a life-long gene therapy for heart disease, the leading cause of death for men and women in the U.S.

Attaining this lofty goal will be the job of Alphabet’s gene-editing start-up, Verve Therapeutics, and Google’s life science start-up, Verily.

This month, Google’s venture fund, GV, partnered with three other funds to launch Verve Therapeutics with $58.5 million in Series A funding. The company’s scientific founders include Dr. Sekar Kathiresan (CEO), Dr. Kiran Musunuru (chief scientific adviser) and Dr. J. Keith Joung (strategic adviser).

Read more