Menu

Blog

Archive for the ‘biotech/medical’ category: Page 199

Jan 25, 2024

Nanoparticle spray reduces risk of airborne bacterial infections caused by air filtration systems

Posted by in categories: biotech/medical, chemistry, nanotechnology

A novel nanoparticle spray coating process has been shown to all but eliminate the growth of some of the world’s most dangerous bacteria in air filtration systems, significantly reducing the risk of airborne bacterial and viral infections.

That’s the principal finding of a study, led by researchers from IMDEA Materials Institute in collaboration with scientists from the Networking Biomedical Research Center in Respiratory Diseases (CIBERES) and Rey Juan Carlos University (URJC) in Madrid, Spain. The study was published in Materials Chemistry and Physics.

The study, “Control of microbial agents by functionalization of commercial air filters with metal oxide particles,” tested various spray coatings of silver (Ag2O), copper (CuO) and zinc (ZnO) oxides as low-cost antiviral and antibacterial filters when applied to commercially available air filtration systems.

Jan 25, 2024

Breakthrough: Deaf Boy Can Hear After First Gene Treatment in US

Posted by in categories: biotech/medical, genetics

His father’s voice, the sounds of passing cars and scissors clipping his hair: An 11-year-old boy is hearing for the first time in his life after receiving a breakthrough gene therapy.

The Children’s Hospital of Philadelphia (CHOP) which carried out the treatment – a first in the United States – said in a statement Tuesday the milestone represents hope for patients around the world with hearing loss caused by genetic mutations.

Aissam Dam was born “profoundly deaf” because of a highly rare abnormality in a single gene.

Jan 25, 2024

Research suggests chronic pain is different for males and females

Posted by in categories: biotech/medical, neuroscience

A University of Alberta research team has uncovered differences in the way male and female mice develop and resolve chronic pain, pointing to potential pathways for future targeted treatments for humans.

In recently published research in Brain, Behavior, and Immunity, the team reports on its study of mice with chronic resulting from inflammation rather than direct injury. The researchers found that the were more sensitive to the effects of called macrophages. They also identified an X chromosome-linked receptor that is critical for resolving both acute and in both sexes.

“We’re always interested in understanding the triggers for pain, but in this study, we went up the next step to ask how pain resolves to determine how these immune cells are involved,” explains principal investigator Bradley Kerr, professor of anesthesiology and in the Faculty of Medicine & Dentistry.

Jan 25, 2024

T Cells May Be The Living Anti-Aging Elixir

Posted by in categories: biotech/medical, genetics, life extension

The fountain of youth has eluded explorers for ages.


Summary: Researchers found that T cells can be genetically reprogrammed to target and eliminate senescent cells, which contribute to aging-related diseases. By using CAR (chimeric antigen receptor) T cells in mice, they achieved significant health improvements including lower body weight, enhanced metabolism, and increased physical activity.

This groundbreaking approach, offering long-term effects from a single treatment, could revolutionize treatments for age-related conditions like obesity and diabetes, transcending the potential of CAR T cells beyond their current use in cancer therapy.

Jan 25, 2024

Unlocking Bacterial Secrets: The Revolutionary Tool Decoding Gene Behavior

Posted by in categories: biotech/medical, chemistry

Researchers discovered a method to expedite the study of bacterial gene regulation, which could help fight antibiotic resistance by analyzing DNA replication’s impact on gene expression.

Bacterial infections cause millions of deaths each year, with the global threat made worse by the increasing resistance of the microbes to antibiotic treatments. This is due in part to the ability of bacteria to switch genes on and off as they sense environmental changes, including the presence of drugs. Such switching is accomplished through transcription, which converts the DNA in genes into its chemical cousin in mRNA, which guides the building of proteins that make up the microbe’s structure.

For this reason, understanding how mRNA production is regulated for each bacterial gene is central to efforts to counter resistance, but approaches used to study this regulation to date have been laborious. In a new study, scientists revealed a trick that may speed such efforts.

Jan 24, 2024

Deep learning model COMPOSER enhances early sepsis detection and patient survival

Posted by in categories: biotech/medical, robotics/AI

🏥 💻 🚑


Study in Npj Digital Medicine evaluates COMPOSER, a deep learning model for early sepsis prediction, showing its effectiveness in improving patient care and reducing in-hospital mortality rates.

Jan 24, 2024

CRISPR technology: A decade of genome editing is only the beginning

Posted by in categories: biotech/medical, genetics

A review discusses the current state of CRISPR-mediated genetic manipulation in human cells, animals, and plants and considers its future potential.

Jan 24, 2024

Retinal images could predict future risk of heart or lung disease

Posted by in categories: biotech/medical, health

People with unusually thin retinas are at greater risk of later developing bronchitis and other conditions, suggesting retinal scans could eventually become a component of routine health screening.

By Timmy Broderick

Jan 24, 2024

Visualizing the Relationship Between Cancer and Lifespan

Posted by in category: biotech/medical

New research links mutation rates and lifespan. We visualize the data supporting this new framework for understanding cancer.

Jan 24, 2024

Can autoimmune diseases be cured? Scientists see hope at last

Posted by in categories: biotech/medical, neuroscience

But then Santamaria, who is at the University of Calgary in Canada, came up with a bold idea. Maybe he could use these particles as a therapy to target and quiet, or even kill, the cells responsible for driving the disease — those that destroy insulin-producing islet cells in the pancreas. It seemed like a far-fetched idea, but he decided to try it. “I kept doing experiment after experiment,” he says. Now, more than two decades later, Santamaria’s therapy is on the cusp of being tested in people.

It’s not alone. Researchers have been trying for more than 50 years to tame the cells that are responsible for autoimmune disorders such as type 1 diabetes, lupus and multiple sclerosis. Most of the approved therapies for these conditions work by suppressing the entire immune response. This often alleviates symptoms but leaves people at elevated risk of infections and cancers.

But for decades, immunologists have hoped to restore what’s known as tolerance — the immune system’s ability to ignore antigens that belong in the body while appropriately attacking those that don’t. In some cases, that means administering the very antigens that the rogue cells are trained to attack, a strategy that can deprogram the cells and dampen the autoimmune response. Other researchers are trying to selectively wipe out the problematic cells, or to introduce suppressive immune cells that have been engineered to target them. One approach that relies on engineered immune cells was used to treat 15 people with lupus or other immune disorders with surprising success1. One participant has been symptom-free for more than two and a half years.

Page 199 of 2,638First196197198199200201202203Last