Using computational tools and virtual screening, researchers at the Center for Redox Processes in Biomedicine (Redoxoma) have identified new inhibitors of the enzyme human 15-lipoxygenase-2 (h15-LOX-2). This protein plays an important role in inflammatory and metabolic processes and contributes to cellular homeostasis.
The discovery, described in the Journal of Medicinal Chemistry, could open up new avenues for investigating the biological and pathological functions of the enzyme and provide promising candidates for the development of new drugs.
“Although h15-LOX-2 is a potential biological target, it’s scarcely been explored for this purpose. Our work contributes to new inhibitors that have structural diversity among themselves and with respect to inhibitors already described in the literature. What’s more, they have similar drug properties according to predictions based on computational models,” says Lucas Gasparello Viviani, first author of the article.
Skin microbes do more than coexist—they shape immune responses, repair tissue, and influence gene expression across your lifespan. This review explains how disruptions in this microbiome-immune dialogue can lead to eczema, psoriasis, or acne.
Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults, with an average first diagnosis at age 68, and has historically carried poor prognosis due to various genetic alterations and abnormalities that complicate…
Artificial Intelligence (AI) and Neuroscience are two fields, but they are closely related to each other. Artificial intelligence can provide powerful tools for neuroscience research, and its application in neurological diseases is of great importance. The convergence of AI and neuroscience has sparked a paradigm shift in our understanding of the brain and its intricate mechanisms.
Here, Creative Biolabs explores the remarkable impact of AI in neuroscience research, highlighting its potential to unlock new frontiers in our quest to unravel the mysteries of the brain.
Neuroscience research generates vast amounts of complex data, ranging from molecular and cellular information to data generated by large-scale brain activity. For researchers, analyzing and decoding this wealth of data is a major challenge. AI technology steps in to address just this problem.
In this episode, we welcome Prof. Dr.-Ing. Maurits Ortmanns, a leading expert in ASIC design and professor at the University of Ulm, Germany. With a distinguished career in microelectronics, Dr. Ortmanns has contributed extensively to the development of integrated circuits for biomedical applications. He shares insights into the critical role of ASIC (Application-Specific Integrated Circuit) design in advancing neurotech implants, focusing on low-power, high-speed circuits that are essential for optimizing the performance and reliability of these devices. Dr. Ortmanns also discusses the challenges and future of circuit integration in neurotechnology.
Top 3 Takeaways:
“Each ASIC is very low in cost because the development cost is spread across millions of units. The actual production cost is minimal; the primary expense lies in the development time until the first chips are produced and ready for manufacturing.” “For an inexperienced engineer, it typically takes about six months to a year to design the blueprint for the chip. Then, depending on the manufacturer, it takes an additional four to six months for the actual fabrication of the ASIC. Finally, you would need another one to two months for testing, so the total turnaround time for a small chip is approximately one and a half years.” “Let’s take the example of a neuromodulator. You need recordings or data from neurons and stimulation data going to the neurons, so you essentially have these two components. Then, you encounter challenges like stimulation artifacts. One person might focus on eliminating the stimulation artifact in the recording channel. That requires additional algorithms or hardware, and the data needs to be digitized, which is another task. You may also have someone working on a compression algorithm and building digital circuitry to compress the raw input data. Then, there’s the data interface, power management, and wireless energy delivery. Each person works on their specific innovation, and if everything is well-planned and lucky, all these pieces can come together to create a complete system. However, sometimes you simply don’t have a breakthrough idea for power management or communication.” 0:45 Do you want to introduce yourself better than I just did?
3:15 What is integrated circuit design?
7:30 What are ASIC’s? How are they used in neurotech?
10:15 How does the million dollar fab cost get split into each chip?
James Kinross, a colon cancer surgeon, believes that changes in the gut microbiome are likely contributing to rising rates of the disease in young people.
Once considered obscure or opportunistic, invasive fungal infections are now surfacing with alarming frequency — and in patients and places doctors never used…