Toggle light / dark theme

Deep science: AI is in the air, water, soil and steel

Research papers come out far too rapidly for anyone to read them all, especially in the field of machine learning, which now affects (and produces papers in) practically every industry and company. This column aims to collect some of the most relevant recent discoveries and papers — particularly in but not limited to artificial intelligence — and explain why they matter.

This week brings a few unusual applications of or developments in machine learning, as well as a particularly unusual rejection of the method for pandemic-related analysis.

One hardly expects to find machine learning in the domain of government regulation, if only because one assumes federal regulators are hopelessly behind the times when it comes to this sort of thing. So it may surprise you that the U.S. Environmental Protection Agency has partnered with researchers at Stanford to algorithmically root out violators of environmental rules.

New technology ‘retrains’ cells to repair damaged brain tissue in mice after stroke

The regeneration of damaged central nervous system (CNS) tissues is one of the biggest goals of regenerative medicine.


Most stroke victims don’t receive treatment fast enough to prevent brain damage. Scientists at The Ohio State University Wexner Medical Center, College of Engineering and College of Medicine have developed technology to “retrain” cells to help repair damaged brain tissue. It’s an advancement that may someday help patients regain speech, cognition and motor function, even when administered days after an ischemic stroke.

Engineering and medical researchers use a process created by Ohio State called tissue nanotransfection (TNT) to introduce genetic material into cells. This allows them to reprogram skin cells to become something different—in this case vascular cells—to help fix damaged tissue.

Study findings published online today in the journal Science Advances.

A new global rivalry? Airbus, Boeing, Comac and the future of aviation

The future of aviation, planes of the future.


As the aviation industry attempts to recover from the devastating effects of the pandemic, we take a in depth look at the future of flying. Will we soon be boarding commercial jets made in China? Or flying faster than the speed of sound? And what will the planes actually look like? Answers to these questions and more as Rob Watts reports on the future of flight.

Subscribe: https://www.youtube.com/user/deutschewelleenglish?sub_confirmation=1

For more news go to: http://www.dw.com/en/
Follow DW on social media:
►Facebook: https://www.facebook.com/deutschewellenews/
►Twitter: https://twitter.com/dwnews.
►Instagram: https://www.instagram.com/dwnews.
Für Videos in deutscher Sprache besuchen Sie: https://www.youtube.com/dwdeutsch.
#Planes #Aviation #Aircraft

U.S. Transhumanist Party Virtual Enlightenment Salon with Aubrey de Grey

Today at 1 PM PST.


On Sunday, February 212021, at 1 p.m. U.S. Pacific Time, the U.S. Transhumanist Party invites Dr. Aubrey de Grey of the SENS Research Foundation, for an in-depth conversation about recent developments in the quest to reverse the damage of biological aging. The discussion will cover current in rejuvenation research and advocacy, as well as delve into how the prospects for reaching longevity escape velocity have changed since Dr. de Grey’s remarks at the U.S. Transhumanist Party Discussion Panel on Life Extension nearly 4 years ago in 2017.

Dr. Aubrey de Grey is the biomedical gerontologist who researched the idea for and founded SENS Research Foundation — http://www.sens.org/. He received his BA in Computer Science and Ph.D. in Biology from the University of Cambridge in 1985 and 2000, respectively. Dr. de Grey is Editor-in-Chief of Rejuvenation Research, is a Fellow of both the Gerontological Society of America and the American Aging Association, and sits on the editorial and scientific advisory boards of numerous journals and organizations.

Watch this Virtual Enlightenment Salon on YouTube here: https://www.youtube.com/watch?v=ohet4kAfskM

An End To Aging — The Mother Of All Disease

I will look at the idea that all disease could be almost stopped in its tracks with a universal treatment for aging. A lot of people ask when we will cure aging and the answer is it may well be here sooner than many realise.

It doesn’t matter how good the treatments are that we develop for cancer, heart disease, alzheimers, and any other of a number of the most common ways we finally die, it is really just a game of whack a mole. If you survive one, just wait a few years and another will get you.

And they cost society, both socially and economically on a massive scale.

Does that sound morbid, sad, as if it is all just pointless?

Well it kind of is, in a way.

But it doesn’t have to be that way…

WHO thinks it knows where COVID-19 originated

The report said the wildlife farms were part of a project the Chinese government has been promoting for 20 years.

Daszak said: “They take exotic animals, like civets, porcupines, pangolins, raccoon dogs and bamboo rats, and they breed them in captivity,” NPR cited. He added that the project was a means to “alleviate rural populations out of poverty,”

In the next two weeks, the WHO is expected to reveal the team’s investigative findings. However, Daszak provided NPR with a “highlight” of what the team determined.

Civil liability for damages related to germline and embryo editing against the legal admissibility of gene editing

The development of gene therapy, in particular gene editing using the CRISPR-Cas9 method, has prompted a lively discussion around the world about how deeply you can interfere with the human genome. The creators of this method have turned to the world community, including lawyers, to undertake a public discussion of the implications that it can create (The National Academies of Sciences Engineering Medicine, 2015). The most important problem to be resolved in the future, in my opinion, will be the issue of establishing very clear legal principles of liability for damages resulting from the editing of genes in human embryos and reproductive cells. However, before this happens, it is necessary to show the possible legal problems that may arise and that will certainly appear in future legislative work in the world. Questions must be asked to which world legal experts will need to seek answers. The goal of this paper is to show the possible legal problems and ask questions related to the liability for damages resulting from the editing of genes in human embryos and reproductive cells that will be answered in the future.

Private law considerations will be based on Polish law, although it should be pointed out that the conclusions derived from them appear to be of universal nature for different legal systems. Despite the fact that legal considerations will refer to the regulation of Polish law, the subject of the analysis will also be the differences in the legal qualification of reproductive cells and embryos in other European legislations. It seems that nowhere in the world are there special regulations regarding the liability for damage related to the genetic editing of reproductive cells or embryos. Therefore, there is a need to present new challenges for classic private law institutions, such as legal abilities, torts, or liability for damages. Due to the lack of uniform European regulations and different conflicts of rights the subject of analysis will not be wrongful life and wrongful birth actions, but only claims of prenatal damage to a child.

The first major legal problem facing the international community is, of course, the question of the legal acceptability of the editing of genes of human reproductive cells and embryos (van Dijke et al., 2018). In this regard, it should be pointed out that despite the initial demand to ban such editing, over time, increasingly more scientists have pointed to the fact that it is not possible to maintain such a moratorium (Doudna and Sternberg, 2017). Jiankui’s presentation at the Second International Summit on Human Genome Editing on November 272018, showed that the introduction of a moratorium on genetic modifications of embryos in Europe, the condemnation of such research by a group of 120 of the greatest geneticists, even the Chinese regulations (Zhang and Lie, 2018) will not limit its conduct (Cyranoski and Ledford, 2018). Globalization of the medical market means that if any procedures are allowed on other continents, they will also become available to Europeans (Lunshof, 2016).

The origin of SARS-CoV-2 furin cleavage site remains a mystery

“The furin cleavage site consists of four amino acids PRRA, which are encoded by 12 inserted nucleotides in the S gene. A characteristic feature of this site is an arginine doublet. This insertion could have occurred by random insertion mutation, recombination or by laboratory insertion. The researchers say the possibility of random insertion is too low to explain the origin of this motif. Surprisingly, the CGGCGG codons encoding the two arginines of the doublet in SARS-CoV-2 are not found in any of the furin sites in other viral proteins expressed by a wide range of viruses. Even within the SARS-CoV-2, where arginine is encoded by six codons, only a minority of arginine residues are encoded by the CGG codon. Again, only two of the 42 arginines in the SARS-CoV-2 spike are encoded by this codon — and these are in the PRRA motif. For recombination to occur, there must be a donor, from another furin site and probably from another virus. In the absence of a known virus containing this arginine doublet encoded by the CGGCGG codons, the researchers discount the recombination theory as the mechanism underlying the emergence of PRRA in SARS-CoV-2.”


The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has largely defied attempts to contain its spread by non-pharmaceutical interventions (NPIs). With the massive loss of life and economic damage, the only way out, in the absence of specific antiviral therapeutics, has been the development of vaccines to achieve population immunity.

A new study on the Preprints server discusses the origin of the furin cleavage site on the SARS-CoV-2 spike protein, which is responsible for the virus’s relatively high infectivity compared to relatives in the betacoronavirus subgenus.