Toggle light / dark theme

Ira Pastor, ideaXme life sciences ambassador, interviews Dr. Rachel Ramoni, Chief Research and Development Officer at the U.S. Department of Veteran Affairs.

Ira Pastor Comments:

The United States Department of Veterans Affairs (VA) @U.S. Dept. of Veterans Affairs is a federal Cabinet-level agency that provides comprehensive healthcare services to military veterans at over 1,000 VA medical centers and outpatient clinics located throughout the US. It also provides several non-healthcare benefits including disability compensation, vocational rehabilitation, education assistance, home loans, and life insurance; and provides burial and memorial benefits to eligible veterans and family members.

The VA serves over 9 million enrolled Veterans each year, employs over 377,000 people and has an annual budget of $200 billion.

Within the VA structure, the Office of Research & Development is focused on improving the lives of Veterans, and all Americans, through health care discovery and innovation including: basic, translational, clinical, health services, and rehabilitative research, and applies scientific knowledge to develop effective individualized care solutions.

Dr. Rachel Ramoni

Teeny-tiny living robots made their world debut earlier this year. These microscopic organisms are composed entirely of frog stem cells, and, thanks to a special computer algorithm, they can take on different shapes and perform simple functions: crawling, traveling in circles, moving small objects — or even joining with other organic bots to collectively perform tasks.


The world’s first living robots may one day clean up our oceans.

Baker won one of the six $3 million Breakthrough Prizes this year, which were awarded to eight different scientists in Mathematics, Fundamental Physics and Life Sciences.


David Baker, whose protein design technology is being used to develop therapies for Covid-19 and cancer, received one of several awards to scientists from the Breakthrough Prize Foundation that add up to a combined total of $21.75 million.

Mid-infrared lasers have been widely used in imaging, detection, diagnostics, environmental monitoring, medicine, industry, defense and others. For mid-infrared laser systems, low phonon energy gain materials are key factors.

Among these mid-infrared materials, Er3+-doped CaF2 transparent ceramics are promising candidate materials because of their ultra-low phonon energy as well as excellent physical, chemical, and , which quickly attract the attention of researchers. However, traditional preparation methods can’t obtain high-quality Er3+-doped CaF2 transparent ceramics.

Recently, a research team led by Prof. Zhang Long from the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has developed a high quality Er3+-doped CaF2 transparent ceramics by single crystal ceramization. Their study was published in Journal of the European Ceramic Society.

Circa 2018 o,.o!


Dental fillings may soon be left in the ash heap of history, thanks to a recent discovery about a drug called Tideglusib.

Developed for and trialled to treat Alzheimer’s disease, last year scientists found the drug also happens to promote the natural tooth regrowth mechanism in mice, allowing the tooth to repair cavities.

Tideglusib works by stimulating stem cells in the pulp of teeth, the source of new dentine. Dentine is the mineralised substance beneath tooth enamel that gets eaten away by tooth decay.

One of the most consumed drugs in the US – and the most commonly taken analgesic worldwide – could be doing a lot more than simply taking the edge off your headache, new evidence suggests.

Acetaminophen, also known as paracetamol and sold widely under the brand names Tylenol and Panadol, also increases risk-taking, according to a new study that measured changes in people’s behaviour when under the influence of the common over-the-counter medication.

“Acetaminophen seems to make people feel less negative emotion when they consider risky activities – they just don’t feel as scared,” says neuroscientist Baldwin Way from The Ohio State University.

Researchers at McMaster University have developed a new technique to tease ancient DNA from soil, pulling the genomes of hundreds of animals and thousands of plants—many of them long extinct—from less than a gram of sediment.

The DNA extraction method, outlined in the journal Quarternary Research, allows scientists to reconstruct the most advanced picture ever of environments that existed thousands of years ago.

The researchers analyzed permafrost samples from four sites in the Yukon, each representing different points in the Pleistocene-Halocene transition, which occurred approximately 11,000 years ago.

Scientists at Cold Spring Harbor Laboratory (CSHL) and Stanford University have pinpointed the circuit in the brain that is responsible for sleepless nights in times of stress—and it turns out that circuit does more than make you toss and turn. Their study, done in mice, ties the same neuronal connections that trigger insomnia to stress-induced changes in the immune system, which weaken the body’s defenses against a host of threats.

The study, reported September 9, 2020, in the journal Science Advances, connects and explains two familiar problems, says CSHL Assistant Professor Jeremy Borniger. “This sort of stress-induced insomnia is well known among anybody that’s tried to get to sleep with a looming deadline or something the next day,” he says. “And in the clinical world, it’s been known for a long time that chronically stressed patients typically do worse on a variety of different treatments and across a variety of different diseases.”

Like many aspects of the body’s stress response, these effects are thought to be driven by the stress hormone cortisol. Working in the Stanford lab of Luis de Lecea, where Borniger completed a postdoctoral fellowship prior to joining CSHL, the research team found a direct connection between stress-sensitive neurons in the brain that trigger cortisol’s release and nearby neurons that promote insomnia.

… The same connection, they found, also has a potent effect on the immune system. Stress significantly disrupts the abundance of certain immune cells in the blood, as well signaling pathways inside them, and the team was able to recreate these changes simply by stimulating the same neurons that link stress to insomnia.

Understanding this circuitry opens the door to a deeper understanding of the consequences of stress, not just in healthy individuals but also in disease, Borniger says:

“I’m really interested in how we can manipulate distinct circuits in the brain to control not just the immune system at baseline, but in disease states like inflammatory bowel disease or in cancer or in psoriasis—things that are associated with systemic inflammation. Because if we can understand and manipulate the immune system using the natural circuitry in the body rather than using a drug that hits certain targets within the system, I think that would be much more effective in the long run, because it just co-opts the natural circuits in the body.”