Toggle light / dark theme

Like all countries, China is facing severe economic losses from the pandemic, and that will certainly have a negative impact on scientific research, because funding will be reduced and projects will be delayed, says physicist Wang Yifang, director of the Institute of High Energy Physics in Beijing. Some universities have already announced a cut in funding. The research budget given by the education ministry to Jiangnan University in Wuxi, for example, will drop by more than 25% for 2020, and other universities are facing similar reductions. “An overall budget cutting of government spending on higher education is highly possible, though the level and scope may vary by regions, universities and fields,” says Tang Li, a science-policy scientist at Fudan University in Shanghai.


The country is rapidly gaining on the United States in research, but problems could slow its rise: part 5 in a series on science after the pandemic.

When it comes to monitoring electrical activity in the brain, patients typically have to lie very still inside a large magnetoencephalography (MEG) machine. That could be about to change, though, as scientists have developed a new version of a wearable helmet that does the same job.

Back in 2018, researchers at Britain’s University of Nottingham revealed the original version of their “MEG helmet.”

The 3D-printed device was fitted with multiple sensors that allowed it to read the tiny magnetic fields created by brain waves, just like a regular MEG machine. Unlike the case with one of those, however, wearers could move around as those readings were taking place.

Rapamycin, a drug that has life-extending effects on mice (and possibly dogs and humans), also reverses age-related dental problems in mice. 🦷 Out now in eLife from researchers at The University of Washington School of Dentistry & JAX’s Kaczorowski Lab:


Rapamycin, which has life-extending effects on mice, also reverses age-related dental problems such as periodontitis and regrows bones in the animals.

The COVID-19 pandemic will have a profound impact on robotics, as more companies look to automation as a way forward. While wide-scale automation had long seemed like an inevitability, the pandemic is set to accelerate the push as corporations look for processes that remove the human element from the equation.

Of course, Locus Robotics hasn’t had too much of an issue raising money previously. The Massachusetts-based startup, which raised $26 million back in April of last year, is adding a $40 million Series D to its funds. That brings the full amount to north of $105 million. This latest round, led by Zebra Technologies, comes as the company looks to expand operations with the launch of a European HQ.

“The new funding allows Locus to accelerate expansion into global markets,” CEO Rick Faulk said in a release, “enabling us to strengthen our support of retail, industrial, healthcare, and 3PL businesses around the world as they navigate through the COVID-19 pandemic, ensuring that they come out stronger on the other side.”

:0000


Physicists around the world are cracking open the proton, within the nucleus of the atom, to see what’s inside.

The proton is a fundamental building block of the atomic nucleus, and among other things it’s used as a medical probe in magnetic resonance imaging. It also has a rich inner structure made up of subatomic particles called quarks and gluons, which bind the quarks together.

Scientists are running a unique experiment involving the world’s largest particle physics laboratory and the world’s fastest university supercomputer to see and understand the dynamic world inside the proton.

Researchers at Tulane University School of Medicine identified a gene that causes an aggressive form of breast cancer to rapidly grow. More importantly, they have also discovered a way to “turn it off” and inhibit cancer from occurring. The animal study results have been so compelling that the team is now working on FDA approval to begin clinical trials and has published details in the journal Scientific Reports.

The team led by Dr. Reza Izadpanah examined the role two genes, including one whose involvement in cancer was discovered by Tulane researchers, play in causing triple negative breast cancer (TNBC). TNBC is considered to be the most aggressive of breast cancers, with a much poorer prognosis for treatment and survival. Izadpanah’s team specifically identified an inhibitor of the TRAF3IP2 gene, which was proven to suppress the growth and spread (metastasis) of TNBC in mouse models that closely resemble humans.

In parallel studies looking at a duo of genes—TRAF3IP2 and Rab27a, which play roles in the secretion of substances that can cause —the research teams studied what happens when they were stopped from functioning. Suppressing the expression of either gene led to a decline in both and the spread of cancer to other organs. Izadpanah says that when Rab27a was silenced, the tumor did not grow but was still spreading a small number of cancer cells to other parts of the body. However, when the TRAF3IP2 gene was turned off, they found no spread (known as “metastasis” or “micrometastasis”) of the original tumor cells for a full year following the treatment. Even more beneficial, inhibiting the TRAF3IP2 gene not only stopped future tumor growth but caused existing tumors to shrink to undetectable levels.

#Eternal life might not be attainable in the near future, but genetic engineers and doctors are working on new life extension technology. The research could lead to keeping our bodies young, and scientists are developing ways of downloading our brain’s consciousness onto digital media once the body is at the end of its life cycle.

#RT #Documentary offers you in-depth documentary films on topics that will leave no one indifferent. It’s not just front-page stories and global events, but issues that extend beyond the headlines. Social and environmental issues, shocking traditions, intriguing personalities, history, sports and so much more – we have documentaries to suit every taste. RTD’s film crews travel far and wide to bring you diverse and compelling stories. Discover the world with us!

SUBSCRIBE TO RTD Channel to get documentaries firsthand! http://bit.ly/1MgFbVy

FOLLOW US

SEE MORE EPISODES like this https://podcast.hyperwellbeing.com/

In this fifteenth episode, Liz Parrish shares her quest for radical life extension and details her two completed gene therapies. She describes the regenerative medical tourism available today for increased lifespan and costs. She relates her company’s mission to create a human that regenerates faster than they degenerate. She details her upcoming gene therapies, including upgraded IQ.

➢ Episode show notes https://bit.ly/2BztscJ
➢ Episode transcript https://bit.ly/2A2adrN

Twitter @hyperwellbeing