Toggle light / dark theme

For the first time, Italian scientists have been able to identify the genetic and molecular basis of this susceptibility to infection as well as to the possibility of contracting a more severe form of the disease. The research will be presented to the 53rd annual conference of the European Society of Human Genetics, being held entirely on-line due to the Covid-19 pandemic, today [Saturday].

As we head into summer, it’s hard not to think about traveling. Not only it is the traditional season for vacations, but we’ve also been cooped up inside for months and most of us are probably itching to explore something new. Of course, given that we’re in the middle of a global pandemic where travel—especially by plane—isn’t a great idea, planning a trip may be more fantasy than reality these days. Either way, you may be curious about which countries have opened up to tourists. If so, an interactive map put out by the International Airline Transportation Association is a great tool.

Light-sheet images of DEEP-Clear processed zebrafish showing proliferative cells (pink) and the nervous system (green). Credit: TU Wien / Max Perutz Labs.

An important observation that helped to develop the new method was that the combination of different chemical treatments had a synergistic effect, allowing for fast depigmentation and tissue clearing. “Shortening chemical processing preserves the integrity of tissues and organisms, so that the molecules and internal structures of interest are more likely to be retained,” explains Marko Pende, the developer of the clearing method, from the lab of Hans-Ulrich Dodt at the TU Wien and the Center for Brain Research (CBR) of the Medical University of Vienna, and one of the first authors of the study. This way multiple organisms could be imaged from different clades ranging from mollusks to bony fish to amphibians. “These are just a few examples. We believe that the method is applicable to multiple organisms. It was just not tried yet”, explains Prof. Hans Ulrich Dodt, senior author of the study.

Virus DNA left on a hospital bed rail was found in nearly half of all sites sampled across a ward within 10 hours and persisted for at least five days, according to a new study by UCL and Great Ormond Street Hospital (GOSH).

The study, published as a letter in the Journal of Hospital Infection, aimed to safely simulate how SARS-CoV-2, the that causes Covid-19, may spread across surfaces in a hospital.

Instead of using the SARS-CoV-2 virus, researchers artificially replicated a section of DNA from a plant-infecting virus, which cannot infect humans, and added it to a milliliter of water at a similar concentration to SARS-CoV-2 copies found in infected patients’ respiratory samples.

HAVANA HAVANA (Reuters) — Communist-run Cuba said this week that use of two drugs produced by its biotech industry that reduce hyper-inflammation in seriously ill COVID-19 patients has sharply curbed its coronavirus-related death toll.

Health authorities have reported just two virus-related deaths over the past nine days among more than 200 active cases on the Caribbean’s largest island, a sign they may have the worst of the outbreak under control.

The government, which hopes to increase its biopharmaceutical exports, has touted various drugs it produces for helping prevent infection with the new coronavirus and treating the COVID-19 disease it causes.

“Properties that have never been found in nature”


Norwegian scientist Birger Sørensen has claimed the novel coronavirus SARS-CoV-2 is not natural in origin. The claims by the co-author of the British-Norwegian study—published in the Quarterly Review of Biophysics —are supported by the former head of Britain’s MI6, Sir Richard Dearlove.

The study from Sørensen and British professor Angus Dalgleish show that the coronavirus’s spike protein contains sequences that appear to be artificially inserted.

They also highlight the lack of mutation since its discovery, which suggests it was already fully adapted to humans. The study goes on to explain the rationale for the development of Biovacc-19, a candidate vaccine for COVID-19 that is now in advanced pre-clinical development.

Researchers at Tufts University’s School of Engineering have developed biomaterial-based inks that respond to and quantify chemicals released from the body (e.g. in sweat and potentially other biofluids) or in the surrounding environment by changing color. The inks can be screen printed onto textiles such as clothes, shoes, or even face masks in complex patterns and at high resolution, providing a detailed map of human response or exposure. The advance in wearable sensing, reported in Advanced Materials, could simultaneously detect and quantify a wide range of biological conditions, molecules and, possibly, pathogens over the surface of the body using conventional garments and uniforms.

“The use of novel bioactive inks with the very common method of screen printing opens up promising opportunities for the mass-production of soft, wearable fabrics with large numbers of sensors that could be applied to detect a range of conditions,” said Fiorenzo Omenetto, corresponding author and the Frank C. Doble Professor of Engineering at Tufts’ School of Engineering. “The fabrics can end up in uniforms for the workplace, sports clothing, or even on furniture and architectural structures.”

Wearable sensing devices have attracted considerable interest in monitoring human performance and health. Many such devices have been invented incorporating electronics in wearable patches, wristbands, and other configurations that monitor either localized or overall physiological information such as heart rate or blood glucose. The research presented by the Tufts team takes a different, complementary approach—non-electronic, colorimetric detection of a theoretically very large number of analytes using sensing garments that can be distributed to cover very large areas: anything from a patch to the entire body, and beyond.