Toggle light / dark theme

Sleep has critical roles in health and regeneration, and one of those is clearing the brain of metabolic waste, according to researchers from the US and Denmark.

Now, as reported in the journal Nature Communications, they’ve discovered in mice that the time of day matters, suggesting the process is controlled by circadian rhythms.

“Our group has shown that just being awake or asleep drastically changes how well the brain can clear waste,” says lead author Lauren Hablitz from the University of Rochester Medical Centre.

Melittin (MEL), a major peptide component of bee venom, is an attractive candidate for cancer therapy. This agent has shown a variety of anti-cancer effects in preclinical cell culture and animal model systems. Despite a convincing efficacy data against variety of cancers, its applicability to humans has met with challenges due to several issues including its non-specific cytotoxicity, degradation and hemolytic activity. Several optimization approaches including utilization of nanoparticle based delivery of MEL have been utilized to circumvent the issues. Here, we summarize the current understanding of the anticancer effects of bee venom and MEL on different kinds of cancers. Further, we also present the available information for the possible mechanism of action of bee venom and/or MEL.

Keywords: Bee venom, Melittin, Melittin conjugates, Cancer management, Anti-cancer effects.

Cancer is one of the major ailment effecting humankind and remains as one of the leading causes of mortality worldwide. The current available data suggests that over 10 million new patients are diagnosed with the disease every year and over 6 million deaths are associated with it representing roughly 12% of worldwide deaths. Fifteen million new cancer cases are anticipated to be diagnosed in the year 2020 [1] which will potentially increase to over 20 million by 2025 [2] and more in years to come. It is also anticipated that the growth and aging of the population may increase the new cancer cases to 21.7 million with about 13 million cancer deaths by the year 2030 [3].

Another bit of science fiction is coming to life as scientists develop a highly elastic and adhesive surgical glue similar to the one Ryan Gosling used to seal his wound in Blade Runner 2049.

Surgeons use sutures, staples, and wires (sometimes in combination with adhesive substances) to facilitate healing of external and internal wounds. These methods, however, are not optimal, especially for reconnecting contracting tissues like those of lungs, arteries and the heart.

Sutures are also not ideal for preventing the leaking of liquids from incisions. In addition, piercing tissues to place sutures can further damage the surrounding wound area and can increase the risk for infection.

The Buck Institute for Research on Aging scientists behind the research found that female mice that were fed enough AKG to maintain a younger mouse’s blood levels of the compound lived eight to 20 percent longer than the control group, according to research published Tuesday in the journal Cell Metabolism. On top of that, male and female mice who ate AKG had better fur color, stronger grips, and improved gait compared to others.

There’s a long and bumpy road between a successful mouse experiment and any sort of clinical applications for humans, but scientists are encouraged because AKG is already considered safe for humans to take.

“The big thing about this is that its safety profile is so good,” Holly Brown-Borg, a University of North Carolina aging researcher who didn’t work on the study told Science Magazine. “It has potential and should be explored further, for sure.”

Scientists have developed the most accurate computing method to date to reconstruct the patchwork of genetic faults within tumors and their history during disease development, in new research funded by Cancer Research UK and published in Nature Genetics.

Their powerful approach combines with the mathematical models of Charles Darwin’s theory of evolution to analyze genetic data more accurately than ever before, paving the way for a fundamental shift in how ’s genetic diversity is used to deliver tailored treatments to patients.

Applying these to DNA data taken from patient samples revealed that tumors had a simpler genetic structure than previously thought. The algorithms showed that tumors had fewer distinct subpopulations of cells, called “subclones,” than previously suggested. The scientists, based at The Institute of Cancer Research, London, and Queen Mary University of London, could also tell how old each subclone was and how fast it was growing.

Over the last 12,000 years or so, human civilization has noticeably reshaped the Earth’s surface. But changes on our own planet will likely pale in comparison when humans settle on other celestial bodies. While many of the changes on Earth over the centuries have been related to food production, by way of agriculture, changes on other worlds will result, not only from the need for on-site production of food, but also for all other consumables, including air.

As vital as synthetic biology will be to the early piloted missions to Mars and voyages of exploration, it will become indispensable to establish a long-term human presence off-Earth, namely colonization. That’s because we’ve evolved over billions of years to thrive specifically in the environments provided by our home planet.

Our physiology is well-suited to Earth’s gravity and its oxygen-rich atmosphere. We also depend on Earth’s global magnetic field to shield us from intense space radiation in the form of charged particles. In comparison, Mars has only patches of localized magnetism, thought to be remnants of a global magnetic field in the distant past. Currently, the Red Planet has no global magnetic field that could trap particle radiation from interplanetary space. Also, the Martian atmosphere is so thin that any shielding against space radiation of any kind is minor compared with the protection that Earth’s atmosphere affords. At the Martian surface, atmospheric pressure never gets above 7 millibars. That’s like Earth at an altitude of about 27,000 m (89,000 ft), which is almost the edge of space. And while the moon’s proximity to Earth could make it a better location than Mars for the first off-world colony, the lunar radiation environment is similar to that of Mars.

“The participants treated with AMX0035 demonstrated a significant slowing of ALS disease progression as measured by the ALSFRS-R. This is a milestone in our fight against ALS,” said Sabrina Paganoni, MD, Ph.D., principal investigator of the CENTAUR study.


An experimental medication slows the progression of the neurodegenerative disease called Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, according to recently released results from a clinical trial run by investigators at the Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital (MGH) and Amylyx Pharmaceuticals, Inc., the company that manufactures the medication. The findings, reported in the New England Journal of Medicine, offer hope that a treatment may one day be available for patients with ALS, a fatal condition with no cure that attacks the nerve cells in the brain and the spinal cord to progressively hinder individuals’ ability to move, speak, eat, and even breathe.

Called AMX0035, the oral medication is a combination of two drugs, sodium phenylbutyrate and taurursodiol, that each target a different cell component important for protecting against nerve cell death.

In the CENTAUR trial, 137 participants with ALS were randomized in a two-toone ratio to receive AMX0035 or placebo. Over six months, participants who were treated with AMX0035 had better functional outcomes than those treated with placebo as measured by the ALS Functional Rating Scale (ALSFRS-R), a questionnaire that evaluates several activities of daily living such as a patient’s ability to walk, hold a pen or swallow food.