Toggle light / dark theme

The dirt scattered across the floor of an ancient, remote cave in Mexico has yielded a new source of viable ancient DNA.

For the first time, scientists have sequenced ancient DNA from soil samples — and it’s all thanks to the Upper Paleolithic bears that prolifically used the cave as their toilet around 16000 years ago.

The scientists describe their work as “the Moon landing of genomics”, as the breakthrough means fossilized remains are no longer the only way of obtaining ancient DNA. Further, it shows ancient DNA can now be studied in the context of populations, rather than scattered, fragmentary individuals.

The mRNA technology at the heart of two Covid-19 shots has been decades in the making. Now it may soon be used to fight cancer and HIV.

#Prognosis #Vaccine #BloombergQuicktake.

——-
Like this video? Subscribe: https://www.youtube.com/Bloomberg?sub_confirmation=1
Become a Quicktake Member for exclusive perks: https://www.youtube.com/bloomberg/join.

QuickTake Originals is Bloomberg’s official premium video channel. We bring you insights and analysis from business, science, and technology experts who are shaping our future. We’re home to Hello World, Giant Leap, Storylines, and the series powering CityLab, Bloomberg Businessweek, Bloomberg Green, and much more.

Subscribe for business news, but not as you’ve known it: exclusive interviews, fascinating profiles, data-driven analysis, and the latest in tech innovation from around the world.

Visit our partner channel QuickTake News for breaking global news and insight in an instant.

As the electronic health record grows in detail, the possibilities for customized care are becoming a reality. This article features some useful links to things in the making.


Illustrated woman. While AI is driving value in all aspects of our lives, there are times where it’s hard to separate the aspirations of those who want to use it to do good from those leverag ing AI today to positively impact real change in health and medici ne.

I have the privilege of working with many talented leaders and organizations that are truly making health and medical services better by harnessing the power of healthcare’s data tsunami using AI and other analytical solutions.

COVID-19, p art t wo

There is growing optimism in how we manage COVID-19 going forward to restore many of the daily living activities we miss and treasure. One of the good things we learned from COVID-19 is that, when faced with a challenge, health systems are capable of agile transformation. As part of this, we also demonstrated that AI could drive a “short time to value.”

Summary: Boosting the expression of the ABCC1 gene may not only reduce amyloid plaques in the brain, it might also delay the onset of Alzheimer’s disease.

Source: TGen.

Findings of a study by the Translational Genomics Research Institute (TGen), an affiliate of City of Hope, suggest that increasing expression of a gene known as ABCC1 could not only reduce the deposition of a hard plaque in the brain that leads to Alzheimer’s disease, but might also prevent or delay this memory-robbing disease from developing.

Someday, scientists believe, tiny DNA-based robots and other nanodevices will deliver medicine inside our bodies, detect the presence of deadly pathogens, and help manufacture increasingly smaller electronics.

Researchers took a big step toward that future by developing a new tool that can design much more complex DNA robots and nanodevices than were ever possible before in a fraction of the time.

In a paper published today in the journal Nature Materials, researchers from The Ohio State University—led by former engineering doctoral student Chao-Min Huang—unveiled new software they call MagicDNA.

In a research paper published in Nature Aging, the team reports using a novel approach to provide the first data-driven classification of multiple diseases obtained using human genetic and medical data freely available from the UK Biobank.

Co-author Professor Linda Partridge (UCL Institute of Health Aging and Max Planck Institute for Biology of Aging) said: Advancing age is the main risk for major diseases, including cancer, dementia, and . Understanding the molecular links between the aging process and age-related diseases could allow them to be targeted with drugs to improve late-life health.

The striking finding from the study was that diseases with a similar age of onset were genetically more similar to each other than they were to diseases in the other three clusters.

CRISPR: Can we control it?
Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Learn skills from the world’s top minds at Big Think Edge: https://bigth.ink/Edge.
———————————————————————————
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a revolutionary technology that gives scientists the ability to alter DNA. On the one hand, this tool could mean the elimination of certain diseases. On the other, there are concerns (both ethical and practical) about its misuse and the yet-unknown consequences of such experimentation.

“The technique could be misused in horrible ways,” says counter-terrorism expert Richard A. Clarke lists biological weapons as one of the potential threats, “Threats for which we don’t have any known antidote.” CRISPR co-inventor, biochemist Jennifer Doudna, echos the concern, recounting a nightmare involving the technology, eugenics, and a meeting with Adolf Hitler.

Should humanity even have access to this type of tool? Do the positives outweigh the potential dangers? How could something like this ever be regulated, and should it be? These questions and more are considered by Doudna, Clarke, evolutionary biologist Richard Dawkins, psychologist Steven Pinker, and physician Siddhartha Mukherjee.
———————————————————————————
TRANSCRIPT:

0:41 Jennifer Doudna defines CRISPR
3:47 CRISPR’s risks.
4:52 Artificial selection vs. artificial mutation.
6:25 Why Steven Pinker believes humanity will play it safe.
9:20 Lessons from history.
10:58 How CRISPR can help.
11:22 Jennifer Doudna’s chimeric-Hitler dream.

- Our ability to manipulate genes can be very powerful. It has been very powerful.

- This is going to revolutionize human life.

Summary: Computer-generated, or virtual humans, prove to be just as good as humans in helping people practice leadership skills.

Source: Frontiers.

A virtual human can be as good as a flesh-and-blood one when it comes to helping people practice new leadership skills. That’s the conclusion from new research published in the journal Frontiers in Virtual Reality that evaluated the effectiveness of computer-generated characters in a training scenario compared to real human role-players in a conventional setting.