Toggle light / dark theme

Major step forward in fabricating an artificial heart, fit for a human

Because the heart, unlike other organs, cannot heal itself after injury, heart disease—the top cause of mortality in the U.S.—is particularly lethal. For this reason, tissue engineering will be crucial for the development of cardiac medicine, ultimately leading to the mass production of a whole human heart for transplant.

Researchers need to duplicate the distinctive structures that make up the heart in order to construct a human heart from the ground up. This involves re-creating helical geometries, which cause the heart to beat in a twisting pattern. It has long been hypothesized that this twisting action is essential for pumping blood at high rates, but establishing this has proven problematic, in part because designing hearts with various geometries and alignments has proven difficult.

The rise of a new ‘Deltacron’? BA.5 combines the worst traits of Omicron with the potential for severity reminiscent of Delta, experts say

Relatively new COVID-19 subvariant BA.5 takes some of Omicron’s worst traits—transmissibility and immune evasion—to a new level.

But it also combines them with a penchant for affecting the lungs reminiscent of the Delta variant that hit the U.S last summer and fall, according to two recent studies.

In the case of Delta, COVID tended to accumulate in and affect the lungs, potentially resulting in more severe disease. Until recently, a silver lining of Omicron has been its tendency to instead accumulate in the upper respiratory tract, causing symptoms more similar to a cold or the flu.

Researchers find the missing photonic link to enable an all-silicon quantum internet

Researchers at Simon Fraser University have made a crucial breakthrough in the development of quantum technology.

Their research, published in Nature today, describes their observations of more than 150,000 silicon “T center” photon-spin qubits, an important milestone that unlocks immediate opportunities to construct massively scalable quantum computers and the quantum internet that will connect them.

Quantum computing has to provide computing power well beyond the capabilities of today’s supercomputers, which could enable advances in many other fields, including chemistry, , medicine and cybersecurity.

Producing COVID-19 antibodies in hen eggs

Researchers at the University of California, Davis, have been able to produce antibodies to the SARS-CoV-2 spike protein in hen eggs. Antibodies harvested from eggs might be used to treat COVID-19 or as a preventative measure for people exposed to the disease. The work was published July 9 in the journal Viruses.

“The beauty of the system is that you can produce a lot of antibodies in birds,” said Rodrigo Gallardo, professor in poultry medicine, Department of Population Health and Reproduction at the UC Davis School of Veterinary Medicine. “In addition to a low cost to produce these antibodies in hens, they can be updated very fast by using updated antigens to hyperimmunize hens, allowing protection against current variant strains.”

Birds produce a type of antibody called IgY, comparable to IgG in humans and other mammals. IgY does not cause allergy or set off immune reactions when injected into humans. IgY appears both in birds’ serum and in their eggs. As a hen lays about 300 eggs a year, you can get a lot of IgY, Gallardo said.

The ‘worst variant’ is here

Nearly two-and-a-half years since the coronavirus pandemic began, the most infectious and transmissible variant yet has arrived.

Repeated Covid-19 waves have left millions of people dead, with only vaccines helping to blunt the toll. Now the virus is spreading again — evolving, escaping immunity and driving an uptick in cases and hospitalizations. The latest version of its shape-shifting, BA.5, is a clear sign that the pandemic is far from over.

The newest offshoot of Omicron, along with a closely related variant, BA.4, are fueling a global surge in cases — 30% over the past fortnight, according to the World Health Organization (WHO).

New shape-shifting material can move like a robot

Engineers have developed a new class of smart textiles that can shape-shift and turn a two-dimensional material into 3D structures.

The team from UNSW Sydney’s Graduate School of Biomedical Engineering, and Tyree Foundation Institute of Health Engineering (Tyree iHealthE), led by Dr. Thanh Nho Do, have produced a material which is constructed from tiny soft artificial “muscles”—which are long silicon tubes filled with fluid which are manipulated to move via hydraulics.

These , which are surrounded by a helical coil of traditional fibers, can be programmed to contract or expand into a variety of shapes depending on its initial structure.

Artificial intelligence model finds potential drug molecules a thousand times faster

The entirety of the known universe is teeming with an infinite number of molecules. But what fraction of these molecules have potential drug-like traits that can be used to develop life-saving drug treatments? Millions? Billions? Trillions? The answer: novemdecillion, or 1060. This gargantuan number prolongs the drug development process for fast-spreading diseases like COVID-19 because it is far beyond what existing drug design models can compute. To put it into perspective, the Milky Way has about 100 thousand million, or 108, stars.

In a paper that will be presented at the International Conference on Machine Learning (ICML), MIT researchers developed a geometric deep-learning model called EquiBind that is 1,200 times faster than one of the fastest existing computational molecular docking models, QuickVina2-W, in successfully binding drug-like molecules to proteins. EquiBind is based on its predecessor, EquiDock, which specializes in binding two proteins using a technique developed by the late Octavian-Eugen Ganea, a recent MIT Computer Science and Artificial Intelligence Laboratory and Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic) postdoc, who also co-authored the EquiBind paper.

Before can even take place, drug researchers must find promising drug-like molecules that can bind or “dock” properly onto certain protein targets in a process known as . After successfully docking to the protein, the binding drug, also known as the ligand, can stop a protein from functioning. If this happens to an essential protein of a bacterium, it can kill the bacterium, conferring protection to the human body.

‘Life-like’ lasers can self-organize, adapt their structure, and cooperate

While many artificial materials have advanced properties, they have a long way to go to combine the versatility and functionality of living materials that can adapt to their situation. For example, in the human body bone and muscle continuously reorganise their structure and composition to better sustain changing weight and level of activity.

Now, researchers from Imperial College London and University College London have demonstrated the first spontaneously self-organising laser device, which can reconfigure when conditions change.

The innovation, reported in Nature Physics (“Self-organized Lasers of Reconfigurable Colloidal Assemblies”), will help enable the development of smart photonic materials capable of better mimicking properties of biological matter, such as responsiveness, adaptation, self-healing, and collective behaviour.

/* */