Toggle light / dark theme

Seoul hospital completes robotic liver transplant surgery

Circa 2021


Seoul National University Hospital completed a liver transplant procedure using a robot and a laparoscope that left no huge abdominal scars for both the donor and recipient.

Suh Kyung-suk, a professor on the liver transplant team, noted that the new surgical procedure also reduces complications associated with the lungs and scars and shortens the recovery time.

The use of a robot and a laparoscope that allowed a transplant without opening the donor’s abdomen was the world’s first.

New algorithm could help enable next-generation deep brain stimulation devices

Now, a developed by Brown University bioengineers could be an important step toward such adaptive DBS. The algorithm removes a key hurdle that makes it difficult for DBS systems to sense while simultaneously delivering .

“We know that there are in the associated with disease states, and we’d like to be able to record those signals and use them to adjust neuromodulation therapy automatically,” said David Borton, an assistant professor of biomedical engineering at Brown and corresponding author of a study describing the algorithm. “The problem is that stimulation creates electrical artifacts that corrupt the signals we’re trying to record. So we’ve developed a means of identifying and removing those artifacts, so all that’s left is the signal of interest from the brain.”

New discoveries of deep brain stimulation put it on par with therapeutics

Despite having remarkable utility in treating movement disorders such as Parkinson’s disease, deep brain stimulation (DBS) has confounded researchers, with a general lack of understanding of why it works at some frequencies and does not at others. Now a University of Houston biomedical engineer is presenting evidence in Nature Communications Biology that electrical stimulation of the brain at higher frequencies (100Hz) induces resonating waveforms which can successfully recalibrate dysfunctional circuits causing movement symptoms.

“We investigated the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson’s disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130−180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment,” reports Nuri Ince, associate professor of biomedical engineering.

For the past couple of decades, (DBS) has been the most important therapeutic advancement in the treatment of Parkinson’s disease, a progressive nervous system disorder that affects movement in 10 million people worldwide. In DBS, electrodes are surgically implanted in the deep brain and electrical pulses are delivered at certain rates to control tremors and other disabling motor signs associated with the .

How electrical stimulation reorganizes the brain

Recordings of neural activity during therapeutic stimulation can be used to predict subsequent changes in brain connectivity, according to a study of epilepsy patients published in JNeurosci. This approach could inform efforts to improve brain stimulation treatments for depression and other psychiatric disorders.

Corey Keller and colleagues delivered from implanted electrodes in 14 patients while recording participants’ .

Repeated sets of stimulation resulted in progressive changes to the brain’s response to simulation, with stronger responses in brain regions connected to the stimulation site.

From drugs to brain surgery—the consciousness technology of the future

Our complicated emotional lives can often feel like a prison. Insecurities, depression and anxiety can all hold us back in life. But what if we could just eliminate the mental states that we don’t want? Or enhance the moods we do? There’s every reason to believe that this may be commonplace in the future. In fact, a lot of the technology that could achieve this already exists.

More than half of us will have experienced an extended period of sadness or low mood during our lives, and about a fifth will have been diagnosed with major depression, although these figures depend a lot on the culture in which you live. The fact that mood disorders are so common – and also so difficult to treat – means that research into the future of mood modulation is constantly evolving.

If you go to a doctor in the UK with suspected depression today, you will start on a pathway of care including “talking cures” such as cognitive behavioural therapy, or drug treatments including serotonin re-uptake inhibitors like Prozac. People who do not respond to these treatments may progress to heavier regimes or combinations of drug treatments. Since most psychoactive drug treatments are associated with side effects, there is pressure to develop new treatment options that are better tolerated by most people.

Transmutation of radioactive waste

Nobel Prize in physics in 2018 and professor emeritus at the École polytechnique, Gérard Mourou is a scientist that nothing can stop. After revolutionizing ophthalmic surgery with the invention of a new laser technique, the physicist launched a challenging scientific project, which only a researchers of this fame could imagine: the transmutation of radioactive waste by high-power laser. Andra met him to find out more.

It is on the plateau of Saclay, south of Paris, that we meet Gérard Mourou. Here at École Polytechnique, the Nobel Prize in Physics has been working in his laboratory for many years. His enthusiasm remains intact when it comes to addressing the issue of lasers. His research on the subject represents the project of a lifetime. “For a long time, the power of lasers was limited, due to the risk of destroying them. Alongside Donna Strickland, with whom I share the Nobel Prize, we invented the technique of CPA (Chirped Pulse Amplification): the laser emits an ultrashort pulse that we will stretch a colossal factor before amplifying it. Thanks to the CPA one can produce considerable power, to the order of the petawatt (10e15W), without destroying the laser. This represents the equivalent of a hundred times the world electricity grid, ” explains Gérard Mourou.

For the physicist, this new invention opens perspectives in several areas, starting with ophthalmic surgery. An application that came to light as a result of an unlikely combination of circumstances: One of my students was aligning the laser for an experiment when it got the pulse in the eye. We went to the hospital where an intern found that the damage to the retina was absolutely perfect. This laser was the cleanest knife possible…

The Association For Low LDL With An Increased CVD Mortality Risk Is Impacted

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Papers referenced in the video:
Association between low-density lipoprotein cholesterol and cardiovascular mortality in statin non-users: a prospective cohort study in 14.9 million Korean adults.
https://pubmed.ncbi.nlm.nih.gov/35218344/

Relationship between serum non-high-density lipoprotein cholesterol and incidence of cardiovascular disease.
https://pubmed.ncbi.nlm.nih.gov/21176640/

Non-HDL cholesterol paradox and effect of underlying malnutrition in patients with coronary artery disease: A 41,182 cohort study.
https://pubmed.ncbi.nlm.nih.gov/35168005/

Age and sex variation in serum albumin concentration: an observational study.
https://pubmed.ncbi.nlm.nih.gov/26071488/

Commonly used clinical chemistry tests as mortality predictors: Results from two large cohort studies.

Training robots with realistic pain expressions can reduce doctors’ risk of causing pain during physical exams

A new approach to producing realistic expressions of pain on robotic patients could help to reduce error and bias during physical examination.

A team led by researchers at Imperial College London has developed a way to generate more accurate expressions of pain on the face of medical training robots during of painful areas.

Findings, published today in Scientific Reports, suggest this could help teach trainee doctors to use clues hidden in patient to minimize the force necessary for physical examinations.

Effective new target for mood-boosting brain stimulation found

Researchers have found an effective target in the brain for electrical stimulation to improve mood in people suffering from depression. As reported in the journal Current Biology on November 29, stimulation of a brain region called the lateral orbitofrontal cortex (OFC) reliably produced acute improvement in mood in patients who suffered from depression at the start of the study.

Those effects were not seen in patients without symptoms, suggesting that the brain stimulation works to normalize activity in mood-related neural circuitry, the researchers say.

“Stimulation induced a pattern of activity in connected to OFC that was similar to patterns seen when patients naturally experienced positive mood states,” says Vikram Rao, of the University of California, San Francisco. “Our findings suggest that OFC is a promising new stimulation target for treatment of mood disorders.”