Toggle light / dark theme

A receptor that was first identified as necessary for insulin action, that also is located on the neural stem cells found deep in the brains of mice, is pivotal for brain stem cell longevity, according to a Rutgers study, a finding that has important implications for brain health and future therapies for brain disorders.

The study 0, appearing in the journal Stem Cell Reports, pinpoints a specific protein known as the insulin receptor (INSR), which is abundant on the neural stem cells that reside in the brain’s subventricular zone. During development, neural stem cells give rise to the entire nervous system, and they persist into adulthood. Over the lifespan these neural stem cells produce new neurons and non-neuronal cells that maintain the infrastructure and functioning of the brain.

Separately, the scientists made another finding when examining brain tumors: INSR plays a crucial role in sustaining and maintaining a population of specialized brain cancer cells known as glioblastoma (GBM) stem cells. When they inactivated the INSR in the GBM stem cells they inhibited the growth of those primitive tumor forming cells.

Sudden infant death syndrome (SIDS) accounts for about 37% of sudden unexpected infant deaths a year in the U.S., and the cause of SIDS has remained largely unknown. On Saturday, researchers from The Children’s Hospital Westmead in Sydney released a study that confirmed not only how these infants die, but why.

SIDS refers to the unexplained deaths of infants under a year old, and it usually occurs while the child is sleeping. According to Mayo Clinic, many in the medical community suspected this phenomenon could be caused by a defect in the part of the brain that controls arousal from sleep and breathing. The theory was that if the infant stopped breathing during sleep, the defect would keep the child from startling or waking up.

The Sydney researchers were able to confirm this theory by analyzing dried blood samples taken from newborns who died from SIDS and other unknown causes. Each SIDS sample was then compared with blood taken from healthy babies. They found the activity of the enzyme butyrylcholinesterase (BChE) was significantly lower in babies who died of SIDS compared to living infants and other non-SIDS infant deaths. BChE plays a major role in the brain’s arousal pathway, explaining why SIDS typically occurs during sleep.

Glucose is the sugar we absorb from the foods we eat. It is the fuel that powers every cell in our bodies. Could glucose also power tomorrow’s medical implants?

Engineers at MIT and the Technical University of Munich think so. They have designed a new kind of glucose fuel cell that converts glucose directly into electricity. The device is smaller than other proposed glucose fuel cells, measuring just 400 nanometers thick. The sugary power source generates about 43 microwatts per square centimeter of electricity, achieving the highest power density of any glucose fuel cell to date under ambient conditions.

Silicon chip with 30 individual glucose micro fuel cells, seen as small silver squares inside each gray rectangle. (Image: Kent Dayton)

Dr. Thomas Lehner was tired of his research repeatedly hitting a wall.

A scientist at the National Institute of Mental Health, Lehner studies the genetic underpinnings of neuropsychiatric disorders. Teasing out associated genes turned out to be relatively simple. Schizophrenia, for example, is linked to small variations in some 360 genes.

The problem is identifying the ones that really matter—culprit gene variants that can be turned into predictive tests, similar to the BRCA gene for breast cancer.

Russian scientists have synthesized a new ultra-hard material consisting of scandium containing carbon. It consists of polymerized fullerene molecules with scandium and carbon atoms inside. The work paves the way for future studies of fullerene-based ultra-hard materials, making them a potential candidate for photovoltaic and optical devices, elements of nanoelectronics and optoelectronics, and biomedical engineering as high-performance contrast agents. The study was published in Carbon.

The discovery of new, all-carbon molecules known as fullerenes almost 40 years ago was a revolutionary breakthrough that paved the way for fullerene nanotechnology. Fullerenes have a made of pentagons and hexagons that resembles a , and a cavity within the carbon frame of fullerene molecules can accommodate a variety of atoms.

The introduction of metal atoms into carbon cages leads to the formation of endohedral metallofullerenes (EMF), which are technologically and scientifically important owing to their unique structures and optoelectronic properties.