Toggle light / dark theme

Do mitochondria hold the key to a Parkinson’s breakthrough?

Biotech startup Lucy Therapeutics is developing mitochondrial-based small molecule therapies for neurological diseases and recently revealed the first two drugs to emerge from its lead programme targeting Parkinson’s. The company, which takes its name from the 3.2-million-year-old fossil of an ancestor of humankind, presented “promising preclinical data” at the Michael J Fox Foundation’s Parkinson’s Disease Therapeutics Conference in October.

The data shown by Lucy Therapeutics demonstrated that its compounds were able to reverse mitochondrial dysfunctions linked to Parkinson’s. In cellular models of the disease, the drugs boosted levels of cellular energy molecule ATP, prevented the death of neurons, and reduced levels of other hallmarks of Parkinson’s, including a-synuclein.

Longevity. Technology: Mitochondria are widely known as the ‘power generators’ within our cells, and their dysfunction has been linked to a range of age-related diseases. But the role of mitochondria extends beyond cellular energy as they also dictate many of a cell’s key functions. Lucy Therapeutics was founded on the hypothesis that diseases with rate-limiting steps involving mitochondrial dysfunction can potentially be treated by modulating key mitochondrial protein targets. To find out more, we caught up with the company’s founder and CEO, Dr Amy Ripka.

Energy Evolution of Electrons Measured Noninvasively

Accelerating particles to relativistic speeds typically requires particle accelerators that are many kilometers in length. Miniature particle accelerators a few tens of centimeters long or smaller also exist. These so-called laser-plasma accelerators are being tested in research facilities for future use in hospitals, where scientists hope the accelerators could generate x rays for cancer diagnostics and treatment. In these devices, particles are accelerated by short laser pulses, so scientists have only a few femtoseconds to track the particles’ evolving properties. Now Simon Bohlen of the German Electron Synchrotron (DESY) and colleagues experimentally demonstrate a technique to measure the energy evolution of an electron bunch inside a laser-plasma accelerator [1]. The team hopes that the technique could be used to improve laser-plasma accelerators and ready them to generate x rays for medical applications.

For their demonstration Bohlen and colleagues used a phenomenon called Thomson scattering, which is the scattering of photons by electrons. They split in two the laser beam used to accelerate the electrons, using one part for normal electron acceleration and the other part to create a Thomson laser—a beam of photons the accelerated electrons could scatter. They then overlapped the Thomson laser and the accelerated electrons such that the two interacted at 20 locations over a 400- m distance. The team measured the energy of the photons scattered during these interactions using an x-ray detector. From these measurements, the team reconstructed the energy evolution of the electrons over most of the accelerator length without destroying the electron beam.

Discovery of world’s oldest DNA breaks record

Fragments of the DNA were found in an Ice Age sediment in Northern Greenland.

The discovery of two-million-year-old DNA has changed all the history that has been recorded so far. It revealed that we should go back one million years to understand Earth’s environment.

The results of the 41 usable samples were found hidden in clay and quartz.


Beth Zaikenjpg.

Led by St. John College and the University of Cambridge, the microscopic fragments of environmental DNA were found in Ice Age sediment in the northern part of Greenland. By using the latest technology in its field, the study found that the fragments are one million older than a Siberian mammoth bone, which was thought to be the Earth’s oldest.

Robots Will Replace These Workers By 2025

This post is also available in: he עברית (Hebrew)

How soon will we be seeing robots walking about the street? How soon will robots join medical staff in hospitals and aid real people in life or death situations? How soon will robots replace health staff? The World Health Organization (WHO) estimates that we will see a global shortfall of 12 million health workers by 2025.

From lifting patients and delivering lab samples, to cleaning and providing companionship, care robots can help with a range of tasks across a hospital or care setting. With nurses spending up to a third of their shift on menial tasks such as collecting equipment, the expectation is that care robots will be able to take ownership of these more mundane jobs, letting health staff focus on more important tasks.

Small Fluorescent Protein Helps to Create More Detailed Biomedical Images

Imaging deep tissues with light is challenging. Visible light is often quickly absorbed and scattered by structures and molecules in the body, preventing researchers from seeing deeper than a millimeter within a tissue. If they do manage to probe further, substances like collagen or melanin often muddy the image, creating the equivalent of background noise through their natural fluorescence. As the authors explained, “Biological tissues have strong optical attenuation in the visible wavelength range (350–700 nm), due to the absorption of hemoglobin and melanin, as well as the tissue scattering, which fundamentally limits the imaging depth of high-resolution optical technologies.”

To wade out from these muddied waters, Yao and collaborator Vladislav Verkhusha, PhD, professor of genetics at Albert Einstein College of Medicine, developed a protein that absorbs and emits longer wavelengths of light in the near-infrared (NIR) spectrum. “Tissue is the most transparent in the 700‑1300 nm window of NIR light,” said Yao. “At those wavelengths, light can penetrate deeper into a tissue, and because there is less natural background fluorescence to filter out, we can take longer exposures and capture clearer images.”

Verkhusha and his lab used a process called directed molecular evolution to engineer their proteins, using photoreceptors normally found in bacteria as the basis for the structure. “The state-of-the-art NIR FPs were engineered from bacterial phytochrome photoreceptors (BphPs),” the team noted. “Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano.”

/* */