Toggle light / dark theme

Through a process known as RNA interference (RNAi), scientists have been able to modify the genetic make-up of the daddy long-legs arachnid so that its distinctive spindly limbs become twice as short.

This process – which uses a gene’s own DNA sequence and small fragments of RNA to turn the gene off – was applied to the Phalangium opilio species, one of the most common species of daddy long-legs in the world.

The result is effectively a daddy short-legs instead of a daddy long-legs. The team behind the work is hoping that the experiments can teach us more about how these elongated limbs evolved in the first place.

Gene-editing technique CRISPR may deliver new treatments for genetic diseases—and it’s already being tested on patients.


17:22 minutes.

In one of the first clinical applications of the technique, last month researchers reported in the New England Journal of Medicine that CRISPR had stopped a genetic disease called amyloidosis, which occurs when an abnormal protein accumulates in your organs. They’re not the only group moving toward using CRISPR on humans; recently, the FDA approved a human clinical trial that will use the technique to edit genes responsible for sickle cell disease.

The same process that eliminates replication errors also eliminates antiviral agents delivered by the treatments commonly used to fight other RNA viruses, such as HIV, HCV and Ebola virus, which partially explains why SARS-CoV-2 has proven so difficult to treat, Yang said.


The coronavirus that causes COVID-19 has demonstrated a stubborn ability to resist most nucleoside antiviral treatments, but a new study led by an Iowa State University scientist could help to overcome the virus’s defenses.

The study, published recently in the peer-reviewed journal Science, details the structure of a critical enzyme present in SARS-CoV-2, the coronavirus that causes COVID-19. This enzyme, known as the proofreading exoribonuclease (or ExoN), removes nucleoside antiviral medications from the virus’s RNA, rendering most nucleoside analogs-based antiviral treatments ineffective. The new study presents the atomic structures of the ExoN enzyme, which could lead to the development of new methods for deactivating the enzyme and opening the door to better treatments for patients suffering from COVID-19.

“If we could find a way to inhibit this enzyme, maybe we can achieve better results to kill the virus with existing nucleoside antiviral treatments. Understanding this structure and the molecular details of how ExoN works can help guide further development of antivirals,” said Yang Yang, lead author of the study and assistant professor in the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology at Iowa State University.

A group of medications long prescribed to treat tapeworm has inspired a compound that shows two-pronged effectiveness against COVID-19 in laboratory studies, according to a new publication appearing online in the journal ACS Infectious Disease.

The compound, part of a class of molecules called salicylanilides, was designed in the laboratory of Professor Kim Janda, Ph.D., the Ely R. Callaway, Jr. Professor of Chemistry and director of the Worm Institute for Research and Medicine at Scripps Research, in La Jolla, CA. “It has been known for 10 or 15 years that salicylanilides work against certain viruses,” Janda says. “However, they tend to be gut-restricted and can have toxicity issues.” Janda’s compound overcomes both issues, in mouse and cell-based tests, acting as both an antiviral and an anti-inflammatory drug-like compound, with properties that auger well for its use in pill form.

International Health Management, Across 17 Countries, 60 Clinics, and 350 Staff — Dr. James Allen, Health Systems Thinkers, LLC.


Dr. James Allen is a primary care internal medicine specialist who developed a fascinating career in international health management and leadership.

Dr. Allen served in the U.S. public health service before moving to Indonesian Borneo in 1994. For the next 22 years he worked in community and occupational health across Asia, managing health teams in 14 countries. As Chevron’s Asia Pacific medical director, he led projects for TB control in Myanmar, primary care in the Philippines, Indonesia, Vietnam, and Bangladesh; and emergency medicine in Azerbaijan and rural China.

A couple people from TRIM are in TRIM-X to see how it works a second time.


In this video Dr. Fahy discusses what we can do to make the most of our thymus without the growth hormone treatment, what the timing makes sense for rejuvenation of the thymus and whether the thymus is tied to the other hallmarks of aging.

Dr. Greg Fahy is a world renowned cryobiologist and is also the chief science officer, and co-founder, of Intervene Immune, a company which pioneers treatments for thymus regeneration and age-related immune system decline. Dr. Fahy Designed and led the pilot TRIIM trial which first time showing both thymus rejuvenation and reversal of human epigenetic age. He is now running the follow up phase II trial TRIIM-X with the aim of confirming and extending the results.

Stanford is looking to democratize research on artificial intelligence and medicine by releasing the world’s largest free repository of AI-ready annotated medical imaging datasets. This will allow people from all over the world to access specific data that they need for their respective projects, which could lead to potentially life-saving breakthroughs in these fields.

The use of artificial intelligence in medicine is becoming increasingly pervasive. From analyzing tumors to detecting a person’s pumping heart, AI looks like it will have an important role for the near future.

The AI-powered devices, which can rival the accuracy of human doctors in diagnosing diseases and illnesses, have been making strides as well. These systems not only spot a likely tumor or bone fracture but also predict the course of an illness with some reliability for recommendations on what to do next. However, these systems require expensive datasets that are created by humans who annotate images meticulously before handing them over to compute power, so they’re rather costly either way you look at it given their price tags–millions even if your data is purchased from others or millions more if one has created their own dataset painstakingly through careful annotation of images such as CT scans and x-rays along with MRI’s etcetera depending upon how advanced each system needs be.

Driver Clocks And Longevity — Dissecting True Functional “Drivers” Of Aging Phenotypes — Dr. Daniel Ives Ph.D., Founder and CEO — Shift Bioscience Ltd.


Dr. Daniel Ives, Ph.D. is Founder and CEO of Shift Bioscience Ltd. (https://shiftbioscience.com), a biotech company making drugs for cellular rejuvenation in humans through the application of machine-learning ‘driver’ clocks to cellular reprogramming, and is the scientific founder who first discovered the gene shifting targets upon which the Shift drug discovery platform is based.

Dr. Ives graduated from Imperial College with a degree in biochemistry and gained his PhD in 2013 working at the MRC Mitochondrial Biology Unit in Cambridge. He carried out his post-doctoral studies under Ian Holt at the National Institute of Medical Research in Mill Hill, now part of the Crick Institute, pursuing damage-removal strategies for mitochondrial DNA mutations.