Toggle light / dark theme

Dr. Ann Marie Kimball (https://epi.washington.edu/faculty/kimball-ann-marie/) is a physician, epidemiologist and currently holds the roles of Associate Fellow at the international affairs think tank Chatham House, and Vice Chair, COVID 19 task force, at The Rotary Foundation / Rotary International.

Previously, Dr. Kimball served as a strategic advisor to the Rockefeller Foundation, supporting the strengthening and development of strategies for Ebola, post-Ebola, and health crisis response, including planning and guiding the formation of a regional disease surveillance network in collaboration with Connecting Organizations for Regional Disease Surveillance (CORDS).

Before joining the Rockefeller Foundation, Dr. Kimball served as technical and strategic lead for the Bill and Melinda Gates Foundation surveillance strategy formation.

Prior to Gates, Dr. Kimball served as Professor of Epidemiology for the University of Washington (UW), School of Public Health, with adjunct appointments in Medicine (Bioinformatics and Infectious Diseases) and the Jackson School of Foreign Affairs. During her tenure at UW, Dr. Kimball founded and directed the APEC Emerging Infections Network, and led research and training programs in Surveillance and Informatics in Peru and Thailand.

Recent advancements in biotechnology have immense potential to help address many global problems; climate change, an aging society, food security, energy security, and infectious diseases.

Biotechnology is not to be confused with the closely related field of biosciences. While biosciences refer to all the sciences that study and understand life, biology, and biological organisms, biotechnology refers to the application of the knowledge of biosciences and other technologies to develop tech and commercial products. Biotechnology is the application of innovation to biosciences in a bid to solve real-world medical problems.

Throw Artificial Intelligence into the mix and we suddenly have a really interesting pot of broth. Several AI trends have already proven beneficial to the development of biotechnology. Dr. Nathan S. Bryan, an inventor, biochemist and professor, who made a name for himself as an innovator and pioneer in nitric oxide drug discovery, commercialization, and molecular medicine, offers his insights on these contributions.

This type of cell could lead to an unlimited cell division in human cells aka a forever lifespan 😃 #immortality


“The sequencing and posting of the HeLa genome brought into sharp relief important ethical and policy issues,” said Dr. Collins. “To understand the family’s perspectives, we met with them face to face three times over four months, and listened carefully to their concerns. Ultimately, we arrived at a path forward that respects their wishes and allows science to progress. We are indebted to the Lacks family for their generosity and thoughtfulness.”

The HeLa Genome Data Use Agreement

The new controlled access policy for full genome sequence data from HeLa cells will give the Lacks family the ability to have a role in work being done with the HeLa genome sequences and track any resulting discoveries. Under the policy, biomedical researchers who agree to abide by terms set forth in the HeLa Genome Data Use Agreement will be able to apply to NIH for access to the full genome sequence data from HeLa cells. Along with representatives from the medical, scientific, and bioethics communities, two representatives of the Lacks family will serve on NIH’s newly formed, six-member working group that will review proposals for access to the HeLa full genome sequence data. In addition, NIH-funded researchers who generate full genome sequence data from HeLa cells will be expected to deposit their data into a single database for future sharing through this process. The database study page will be accessible after the embargo lifts at this url: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?s…0640.v1.p1. Other investigators will be encouraged to respect the wishes of the family and do the same. Importantly, all researchers who use or generate full genomic data from HeLa cells will now be asked to include in their publications an acknowledgement and expression of gratitude to the Lacks family for their contributions.

Circa 2018


The secrets to immortality may lie in an unexpected place — fruit fly stem cells. Researchers led by Howard Hughes Medical Institute (HHMI) Investigator Yukiko Yamashita have found that some stem cells have a genetic trick to remain young forever across generations. While some areas of the fruit fly genome get shorter as they age, some reproductive cells are able to fix that shortening. Once observed only in yeast, this work, reported in eLife, has revealed more about aging, and how some cells can avoid it.

This work focused on critical genes in ribosomal DNA, rDNA. Ribosomes are cellular organelles that act as protein factories. That rDNA is repeated in several areas of the genome because many ribosomes are needed to make all of the proteins the body needs. Five chromosomes each have spots with hundreds of copies of rDNA. However, that type of redundant sequence can be difficult for cells to replicate accurately every time cell division happens.

This work expands the repertoire of DNA-based recording techniques by developing a novel DNA synthesis-based system that can record temporal environmental signals into DNA with minutes resolution. Employing DNA as a high-density data storage medium has paved the way for next-generation digital storage and biosensing technologies. However, the multipart architecture of current DNA-based recording techniques renders them inherently slow and incapable of recording fluctuating signals with sub-hour frequencies. To address this limitation, we developed a simplified system employing a single enzyme, terminal deoxynucleotidyl transferase (TdT), to transduce environmental signals into DNA. TdT adds nucleotides to the 3’ ends of single-stranded DNA (ssDNA) in a template-independent manner, selecting bases according to inherent preferences and environmental conditions.

Immunotherapy is a promising strategy to treat cancer by stimulating the body’s own immune system to destroy tumor cells, but it only works for a handful of cancers. MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances.

“The Rejuvenome Project was launched to target these bottlenecks,” said Nicholas Schaum, PhD, Scientific Director at the Astera Institute. “We hope to do that by characterising treatments and regimens, both established and newly invented, for which we have reason to believe improve health and longevity.”

Previously, Schaum worked as a researcher at Stanford University, California, in conjunction with the Chan Zuckerberg BioHub. He organised dozens of labs and hundreds of researchers into a consortium that produced cell atlases, to characterise aging tissues in mice. These cell atlases became the foundation for Schaum’s further studies into whole-organ aging and single-cell parabiosis.

The Rejuvenome Project is expected to be complete in 2028. All wet lab operations will be centred at Buck, while the dry lab computational aspects will reside at the Astera Institute.

Balancing Risk and Cutting Edge Medical Innovation — Dr. Paul Offit, MD, Director, Vaccine Education Center, Children’s Hospital of Philadelphia.


Dr. Paul A. Offit, MD, (https://www.paul-offit.com/) is an internationally recognized expert in the fields of virology and immunology, Co-Inventor of a landmark vaccine for the prevention of Rotavirus gastroenteritis, and holds multiple titles including — Director of the Vaccine Education Center at Children’s Hospital Of Philadelphia (CHOP), Maurice R. Hilleman Chair of Vaccinology and Professor of Pediatrics, Perelmann School of Medicine, University of Pennsylvania, and Adjunct Associate Professor, The Wistar Institute of Anatomy and Biology.

Dr. Offit was a member of the Advisory Committee on Immunization Practices to the Centers for Disease Control and Prevention, a founding advisory board member of the Autism Science Foundation and the Foundation for Vaccine Research, a member of the Institute of Medicine, and co-editor of the foremost vaccine text, Vaccines.

Scientists long believed the brain was immutable, unable to recover functions lost to injury or disease. But in the past few decades, researchers have devised methods to manipulate the brain and central nervous system to help the paralyzed move and enable the blind to see, and they’re moving closer to restoring lost cognitive abilities.

“We are at an inflection point where we are starting to give functions back to people,” said Michael Lim, MD, professor and chair of neurosurgery.