Toggle light / dark theme

Researchers have confirmed cases of the disease among two unconnected West African populations of chimpanzees, in Guinea-Bissau and the Ivory Coast.

Analysis published in the journal Nature shows the strains of leprosy are different, and both are uncommon among humans.

The origins of the infections are unclear, but the research team – led by the University of Exeter and the Robert Koch Institute – say the findings show leprosy is probably circulating in more wild animals than was previously suspected, either as a result of exposure to humans or other unknown environmental sources.

Cell culture is an essential in vitro experimental tool. An attempt to recapitulate the body in a dish, in two and three dimensions, it has provided the basis for decades of research and probably thousands of PhDs. When it goes wrong, however, whether through accident, infection, misidentification, cross-contamination or uncontrolled differentiation (for stem cells), it can be very stressful, especially in the case of longer-term experiments or when using hard-to-replace cell lines. Another important consideration is reproducibility, which is an acknowledged life sciences industry issue. A 2015 PLOS Biol ogy study, for example, reported in an analysis of previous studies that the prevalence of irreproducible research was over 50% – equivalent to USD $28 billion per year on irreproducible preclinical research.1 Inconsistencies in cell culture approaches are a potential issue in this regard, as if cells are not maintained or used in a consistent way, or are contaminated with an infection (like mycoplasma), this can negatively impact results and make it more difficult to reproduce and/or accurately interpret data.

“Quality control (QC) is a key part of assuring the quality of outputs from any cell culture process, and is an essential part of assuring reproducibility of scientific quality in research as well as assurance of the quality and safety of cell culture-derived products,” comments Glyn N Stacey, International Stem Cell Banking Initiative, Cambridge, UK, and the Institute for Stem Cells and Regeneration and National Stem Cell Resource Centre, Chinese Academy of Sciences, Beijing, China. “These topics are currently very much in the minds of journal editors, research funders and regulators and are thus of crucial significance to researchers.”

This article will look at these different aspects of cell culture quality control and the types of protocols that can be implemented to help ensure reliable and reproducible results.

AI & computational technology for improving drug discovery & development — mati gill, CEO, AION labs.


Mati Gill is the Chief Executive Officer, of AION Labs (https://aionlabs.com/), a company recently launched and backed by a coalition of pharma and tech leaders, including AstraZeneca, Merck, Pfizer, Teva, Amazon Web Services (AWS), and the Israel Biotech Fund (IBF) and Israel Innovation Authority, to improve the whole drug discovery & drug development process with AI and computational biology.

Mati has an MBA (Healthcare & Innovation) and BS degree in law from Reichman University / IDC Herzliya, and has over a decade of experience in leadership roles in the biopharma industry, including most recently as Head of Government Affairs, Corporate & International Markets, at Teva Pharmaceuticals.

𝙎𝙘𝙞𝙚𝙣𝙩𝙞𝙨𝙩𝙨 𝙂𝙧𝙤𝙬 “𝙢𝙞𝙣𝙞 𝙗𝙧𝙖𝙞𝙣𝙨” 𝙞𝙣 𝙩𝙝𝙚 𝙇𝙖𝙗-𝙁𝙞𝙣𝙙 𝙋𝙤𝙩𝙚𝙣𝙩𝙞𝙖𝙡 𝙏𝙧𝙚𝙖𝙩𝙢𝙚𝙣𝙩 𝙋𝙖𝙩𝙝 𝙛𝙤𝙧 𝙁𝙖𝙩𝙖𝙡 𝙉𝙚𝙪𝙧𝙤𝙡𝙤𝙜𝙞𝙘𝙖𝙡 𝘿𝙞𝙨𝙚𝙖𝙨𝙚

Cambridge researchers have developed ‘mini brains’ that allow them to study a fatal and untreatable neurological disorder causing paralysis and dementia – and for the first time have been able to grow these for almost a year.

A common form of motor neuron disease, amyotrophic lateral sclerosis, often overlaps with frontotemporal dementia (ALS/FTD) and can affect younger peo… See More.

A team of researchers publishing in Aging have shown that resveratrol reduces inflammation and partially restores function in a rat model of spinal injury.

In line with previous research

This is far from the first study that aimed to use approaches associated with aging research in order to spur regeneration. For example, we have previously reported that removing senescent cells aids in spinal cord regeneration in a rodent model, at least partially because of the associated reduction in inflammation.