Toggle light / dark theme

In a new study published in Science, researchers have used single-nucleus sequencing (sNuc-Seq) to characterize the cell populations of the axolotl forebrain, an aquatic salamander that can regenerate brain tissue post-injury.

Axolotls – a translational model

The brain is a complex organ, comprising billions of cells and neuronal connections that form intricate networks. Understanding which cells are actively engaged in neurological processes – and which genes underpin this activity – can help us to decipher this complexity. It is only recently that advances in single-cell sequencing have made such research possible, providing insights on the molecular signatures of thousands of individual cells.

Cedars-Sinai investigators have developed an investigational therapy using support cells and a protective protein that can be delivered past the blood-brain barrier. This combined stem cell and gene therapy can potentially protect diseased motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis, a fatal neurological disorder known as ALS or Lou Gehrig’s disease.

In the first trial of its kind, the Cedars-Sinai team showed that delivery of this combined treatment is safe in humans. The findings were reported today in the peer-reviewed journal Nature Medicine.

“Using stem cells is a powerful way to deliver important proteins to the brain or spinal cord that can’t otherwise get through the ,” said senior and corresponding author Clive Svendsen, Ph.D., professor of Biomedical Sciences and Medicine and executive director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute. “We were able to show that the engineered stem cell product can be safely transplanted in the human spinal cord. And after a one-time treatment, these cells can survive and produce an important protein for over three years that is known to protect that die in ALS.”

When one of China’s biggest celebrities, Simon Gong —also known as Gong Jun—released a new music video in June 2022, it quickly attracted 15 million views on the country’s Twitter-like microblogging site Weibo. But the event also stood out for a different reason—one that only eagle-eyed fans might have noticed. The singer in the video was not Gong himself, but a digital replica created by Baidu, a “digital human” powered by artificial intelligence (AI). Likewise, the lyrics and melody were generated by AI, marking the recording as China’s first AI-generated content music video.

Deloitte defines digital humans as AI-powered virtual beings that can produce a whole range of human body language. In recent years, businesses focused on providing round-the-clock services, as well as the media and entertainment industry, are increasingly adopting this nascent technology, aiming to capture a growing market. And as digital humans increasingly populate other sectors like retail, health care, and finance, Emergen Research forecasts that the global market for digital humans will jump to about $530 billion in 2030, from $10 billion in 2020.

If you are used to getting regular health checkups, you might be familiar with endoscopes. The endoscope is an imaging device consisting of a camera and a light guide attached to a long flexible tube. It is particularly useful for acquiring images of the inside of a human body. For example, stomach and colon endoscopy are widely used for the early detection and diagnosis of diseases such as ulcers and cancers.

In general, an endoscope is manufactured by attaching a camera sensor to the end of a probe or using an optical fiber, which allows for information to be transmitted using light. In the case of an endoscope that uses a camera sensor, the thickness of the probe increases, which makes the endoscopy rather invasive. In the case of an endoscope using an optical fiber bundle, it can be manufactured in a thinner form factor, which minimizes invasiveness and results in much less discomfort to the patients.

However, the downside is that in a conventional fiber-bundle endoscope, it is difficult to perform , because the resolution of the obtained image is limited by the size of the individual fiber cores. Much of the image information is also lost due to reflection from the probe tip. Furthermore, in fiber endoscopy, it is often necessary to label the target with fluorescence, especially in with low reflectivity, due to strong back-reflection noise generated from the tip of the thin probe.

A multidisciplinary team of Indiana University researchers have discovered that the motion of chromatin, the material that DNA is made of, can help facilitate effective repair of DNA damage in the human nucleus — a finding that could lead to improved cancer diagnosis and treatment. Their findings were recently published in the Proceedings of the National Academy of Sciences.

DNA damage happens naturally in human body and most of the damage can be repaired by the cell itself. However, unsuccessful repair could lead to cancer.

“DNA in the nucleus is always moving, not static. The motion of its high-order complex, chromatin, has a direct role in influencing DNA repair,” said Jing Liu, an assistant professor of physics in the School of Science at IUPUI. “In yeast, past research shows that DNA damage promotes chromatin motion, and the high mobility of it also facilitates the DNA repair. However, in human cells this relationship is more complicated.”

A study finds that deep brain stimulation to areas of the brain associated with reward and motivation could be used as a potential treatment for depression.

According to researchers at the University of Texas Health Science Center at Houston, deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB), which is linked to motivation and reward, revealed metabolic brain changes over a 12-month period following DBS implantation. This makes it a potent potential therapy for treatment-resistant depression.

The study’s findings, which included 10 patients, were published in the journal Molecular Psychiatry.

University of Maryland psychiatrist Polymnia Georgiou and colleagues accidentally came across an unexpected example of researchers unwittingly skewing a study’s results when their laboratory mice’s reactions to ketamine differed depending on the sex of the humans who administered the drug.

To check it wasn’t just a weird fluke, they did a blinded, randomized trial with an even mix of male and female experimenters. The mice indeed had a greater antidepressant response to ketamine when handled by male humans.

Obviously, the presence of male humans does not somehow change the properties of ketamine, so the researchers probed deeper to confirm the exact mechanism.

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Bristle Discount Link (Oral microbiome quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

Cronometer Discount Link (Daily diet tracking):
https://shareasale.com/r.cfm?b=1390137&u=3266601&m=61121&urllink=&afftrack=

Support the channel with Buy Me A Coffee!
https://www.buymeacoffee.com/mlhnrca.

Papers referenced in the video:

When our eyes move during REM sleep, we’re looking at things in the dream world our brains have created, according to a new study by researchers at the University of California, San Francisco (UCSF). The findings shed light not only on how we dream, but also on how our imaginations work.

REM sleep, which is named for the rapid eye movements associated with it, has been known since the 1950s to be the phase of sleep when dreams occur. But the purpose of the eye movements has remained a matter of much mystery and debate.

REM sleep first occurs about 90 minutes after falling asleep. Your eyes rapidly move from side to side behind closed eyelids. Mixed frequency brain wave activity becomes closer to that seen in wakefulness. Your breathing becomes faster and irregular, and your heart rate and blood pressure increase to near waking levels. Although some can also occur in non-REM sleep, most of your dreaming occurs during REM sleep. Your arm and leg muscles become temporarily paralyzed, which prevents you from acting out your dreams. You sleep less of your time in REM sleep as you age.