Toggle light / dark theme

Wearable Electronics Breakthrough: A Revolutionary Electrochemical Transistor

A multidisciplinary Northwestern University research team has created a groundbreaking transistor that is expected to be optimal for bioelectronics that are high-performance, lightweight, and flexible.

The new electrochemical transistor is compatible with both blood and water and has the ability to amplify significant signals, making it highly beneficial for biomedical sensing. This transistor could make it possible to develop wearable devices that can perform on-site signal processing right at the biology-device interface. Some potential applications include monitoring heart rate and levels of sodium and potassium in the blood, as well as tracking eye movements to study sleep disorders.

“All modern electronics use transistors, which rapidly turn current on and off,” said Tobin J. Marks, a co-corresponding author of the study. “Here we use chemistry to enhance the switching. Our electrochemical transistor takes performance to a totally new level. You have all the properties of a conventional transistor but far higher transconductance (a measure of the amplification it can deliver), ultra-stable cycling of the switching properties, a small footprint that can enable high-density integration, and easy, low-cost fabrication.”

Dr. Abdelali Haoudi, PhD — KAIMRC — Advancing Biomedical R&D & Clinical Development In Saudi Arabia

Advancing Biomedical R&D & Clinical Development In Saudi Arabia — Dr. Abdelali Haoudi, Ph.D., Managing Director, Biotechnology Park, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs.


Dr. Abdelali Haoudi, Ph.D. (https://kaimrc-biotech.org.sa/dr-abdelali-haoudi/) currently leads Strategy and Business Development functions, and is also Managing Director of the Biotechnology Park, at King Abdullah International Medical Research Center, at the Ministry of National Guard Health Affairs. He is also Distinguished Scholar at Harvard University-Boston Children’s Hospital.

Dr. Haoudi is an international Research & Development and Innovation Executive with over 25 years experience, having held several senior positions in Research and Development and Innovation. He has vast experience in science and technology policy development, strategy and business development, corporate development and international partnerships development.

Dr. Haoudi has held several senior and prestigious positions in the academia, government and private sectors globally, including North America, North Africa, Europe and Middle East. Some of the key positions include Founding Vice President for Research, Executive Director for Biomedical Research Institute, and Chairman, at the National Research Fund at Qatar Foundation.

Dr. Haoudi was also Research Professor of cancer and infectious diseases at the University of Virginia and Eastern Virginia Medical School and a fellow of the US National Institutes of Health (NIH). He has held several other positions in elite research and education institutions including Visiting Professor at Harvard Medical School (USA) and a fellow at Institute Pasteur (France).

Fifth person cured of HIV after stem cell transplant, researchers say

Researchers from Germany say a man has been cured of HIV following a stem cell transplant that was performed after several rounds of chemotherapy, making him the fifth known case of the virus being cured in an individual.

In the study published in the Nature science journal, German researchers detailed the case of a 53-year-old patient who was diagnosed with HIV in 2008. After their diagnosis, the patient was placed on antiretroviral therapy (ART) which suppressed the viral load within their system.

Epigenetic and social factors both predict aging and health, but new research suggests one might be stronger

Can we objectively tell how fast we are aging? With a good measure, scientists might be able to change our rate of aging to live longer and healthier lives. Researchers know that some people age faster than others and have been trying to concisely measure the internal physiological changes that lead to deteriorating health with age.

For years, researchers have been using clinical factors normally collected at physicals, like hypertension, cholesterol and weight, as indicators to predict aging. The idea was that these measures could determine whether someone is a fast or slow ager at any point in their . But more recently, researchers have theorized that there are other biological markers that reflect aging at the molecular and cellular level. This includes modifications to a person’s genetic material itself, or epigenetics.

While each person has a that largely does not change over their lifetime, to their genetic material that occur throughout life can change which genes are turned on or off and lead to more rapid aging. These changes typically involve the addition of methyl groups to DNA and are influenced by social and environmental exposures, such as , smoking, pollution and depression.

Why is pneumonia so dangerous? — Eve Gaus and Vanessa Ruiz

Explore how pneumonia attacks the tiny air sacs in your lungs and how your immune system works to fight off the infection.

Every time you breathe, air travels down the trachea, through a series of channels, and then reaches little clusters of air sacs in the lungs. These tiny sacs facilitate a crucial exchange: allowing oxygen from the air we breathe into the bloodstream and clearing out carbon dioxide. Pneumonia wreaks havoc on this exchange system. Eve Gaus and Vanessa Ruiz detail how pneumonia attacks the lungs.

Lesson by Eve Gaus and Vanessa Ruiz, directed by Artrake Studio.

Support Our Non-Profit Mission.

Support us on Patreon: http://bit.ly/TEDEdPatreon.
Check out our merch: http://bit.ly/TEDEDShop.

Connect With Us.

Telomeres Found To Encode Two Proteins, Potentially Transforming Cancer Research

Telomeres – the protective caps at the tips of chromosomes – can encode two proteins, something that was previously thought impossible, new research has suggested. The discovery of genetic information coding for these proteins, one of which is elevated in some human cancers, could have huge ramifications for the fields of health, medicine, and cell biology.

“Discovering that telomeres encode two novel signaling proteins will change our understanding of cancer, aging, and how cells communicate with other cells,” study author Jack Griffith, the Kenan Distinguished Professor of Microbiology and Immunology at the University of North Carolina at Chapel Hill, said in a statement.

“Based on our research, we think simple blood tests for these proteins could provide a valuable screen for certain cancers and other human diseases,” Griffith, who is also a member of the UNC Lineberger Comprehensive Cancer Center, added. “These tests also could provide a measure of ‘telomere health,’ because we know telomeres shorten with age.”

Brain implant startup backed by Bezos and Gates is testing mind-controlled computing on humans

Synchron’s BCI is inserted through the blood vessels, which Oxley calls the “natural highways” into the brain. Synchron’s stent, called the Stentrode, is fitted with tiny sensors and is delivered to the large vein that sits next to the motor cortex. The Stentrode is connected to an antenna that sits under the skin in the chest and collects raw brain data that it sends out of the body to external devices.

Peter Yoo, senior director of neuroscience at Synchron, said since the device is not inserted directly into the brain tissue, the quality of the brain signal isn’t perfect. But the brain doesn’t like being touched by foreign objects, Yoo said, and the less invasive nature of the procedure makes it more accessible.

“There’s roughly about 2,000 interventionalists who can perform these procedures,” Yoo told CNBC. “It’s a little bit more scalable, compared to, say, open-brain surgery or burr holes, which only neurosurgeons can perform.”

How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI

The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.

Researchers store computer operating system and short movie on DNA

Humanity may soon generate more data than hard drives or magnetic tape can handle, a problem that has scientists turning to nature’s age-old solution for information-storage—DNA.

In a new study in Science, a pair of researchers at Columbia University and the New York Genome Center (NYGC) show that an algorithm designed for streaming video on a cellphone can unlock DNA’s nearly full storage potential by squeezing more information into its four base nucleotides. They demonstrate that this technology is also extremely reliable.

DNA is an ideal storage medium because it’s ultra-compact and can last hundreds of thousands of years if kept in a cool, dry place, as demonstrated by the recent recovery of DNA from the bones of a 430,000-year-old human ancestor found in a cave in Spain.

/* */