Harvard Medical School scientists and colleagues at Stanford University have developed an artificial intelligence diagnostic tool that can detect diseases on chest X-rays directly from natural-language descriptions contained in accompanying clinical reports.
The step is deemed a major advance in clinical AI design because most current AI models require laborious human annotation of vast reams of data before the labeled data are fed into the model to train it.
The first 1,000 people who click the link in the description will get 2 free months of Skillshare Premium: https://skl.sh/isaacarthur16 As humanity reaches out to the stars and make new homes on strange new worlds, how will our genetics & DNA change under those alien planets?
Experiments demonstrate that biological cells actively change shape to respond to their surroundings when moving in confined regions.
The movement of cells is essential for embryo development and wound healing. A study of individual human cells moving on a micropatterned surface reveals some of the basic principles governing this movement and shows how cells adapt their shape and behavior to the geometry of their surroundings [1]. The researchers developed a theoretical model, based on their experimental findings, that could be used to study and predict cell movement in more complex environments.
The shapes of animal cells are controlled in part by a web of protein filaments called the cytoskeleton, which can be rearranged by the cell to drive motion. For example, a cell can begin moving by creating a protrusion that bulges out from its surface. Such movement depends on the cell’s adhesion to the surrounding surfaces and on the formation of an asymmetrical arrangement of the cytoskeleton, referred to by biologists as polarity, which drives the growth of protrusions. The motion is also affected by the internal structures of the cell, especially the nucleus, which is less compressible than the fluid cytoplasm.
Modern medicine forces bacteria to adapt: in response to antibiotic treatment, they either increase their fitness or die out. Whether a bacterial population survives or not depends on a combination of its genetics and environment—the antibiotic concentration—at a given moment. Now Suman Das of the University of Cologne, Germany, and colleagues simulate the effect on adaptation of an environment that is constantly changing [1]. Using a model that describes how slow-moving disordered systems respond to external forces, the researchers find that microbe evolution in changing drug concentrations exhibits hysteresis and memory formation. They use analytical methods and numerical simulations to connect these statistical physics concepts to bacterial drug resistance.
The team’s model examines changes in a bacterial population’s genetic sequences. By combining data on bacterial growth rates with statistical tools, the researchers describe how the bacterial genome can store information about both present and past drug concentrations. Their simulations start with a genetic sequence optimized for a certain antibiotic concentration. They then track how the sequence mutates when the concentration shifts to another value. When the concentration increases and then reduces to a lower value, the genetic route taken on the downward path depends on the changes on the upward path. How different the mutation routes are depends on the rate of concentration change.
The researchers find that this behavior mimics that of disordered systems driven by external forces, such as ferromagnetic materials subjected to magnetic fields or amorphous materials subjected to a shearing force. They say that while their approach focuses on the evolution of drug resistance, the framework can be adapted to other problems in evolutionary biology that involve changing environmental parameters.
From the same mind whose research propelled the notion that “sitting too much is not the same as exercising too little,” comes a groundbreaking discovery set to turn a sedentary lifestyle on its ear: The soleus muscle in the calf, though only 1% of your body weight, can do big things to improve the metabolic health in the rest of your body if activated correctly.
And Marc Hamilton, professor of Health and Human Performance at the University of Houston, has discovered such an approach for optimal activation—he’s pioneering the “soleus pushup” (SPU) which effectively elevates muscle metabolism for hours, even while one is sitting. The soleus, one of 600 muscles in the human body, is a posterior leg muscle that runs from just below the knee to the heel.
Published in the journal iScience, Hamilton’s research suggests the soleus pushup’s ability to sustain an elevated oxidative metabolism to improve the regulation of blood glucose is more effective than any popular methods currently touted as a solution including exercise, weight loss and intermittent fasting. Oxidative metabolism is the process by which oxygen is used to burn metabolites like blood glucose or fats, but it depends, in part, on the immediate energy needs of the muscle when it’s working.
Small but mighty, lysosomes play a surprisingly important role in cells despite their diminutive size. Making up only 1–3% of the cell by volume, these small sacs are the cell’s recycling centers, home to enzymes that break down unneeded molecules into small pieces that can then be reassembled to form new ones. Lysosomal dysfunction can lead to a variety of neurodegenerative or other diseases, but without ways to better study the inner contents of lysosomes, the exact molecules involved in diseases—and therefore new drugs to target them—remain elusive.
A new method, reported in Nature on Sept. 21, allows scientists to determine all the molecules present in the lysosomes of any cell in mice. Studying the contents of these molecular recycling centers could help researchers learn how the improper degradation of cellular materials leads to certain diseases. Led by Stanford University’s Monther Abu-Remaileh, institute scholar at Sarafan ChEM-H, the study’s team also learned more about the cause for a currently untreatable neurodegenerative disease known as Batten disease, information that could lead to new therapies.
“Lysosomes are fascinating both fundamentally and clinically: they supply the rest of the cell with nutrients, but we don’t always know how and when they supply them, and they are the places where many diseases, especially those that affect the brain, start,” said Abu-Remaileh, who is an assistant professor of chemical engineering and of genetics.
Maximizing Benefits Of The Life Sciences & Health Tech For All Americans — Dr. Andrew Hebbeler, Ph.D., Principal Assistant Director for Health and Life Sciences, Office of Science and Technology Policy, The White House.
Dr. Andrew Hebbeler, Ph.D., is Principal Assistant Director for Health and Life Sciences, Office of Science and Technology Policy at The White House (https://www.whitehouse.gov/ostp/ostps-teams/health-and-life-sciences/), and has extensive foreign affairs, national security, global health, and science and technology (S&T) policy experience.
Most recently, Dr. Hebbeler was Senior Director and Lead Scientist for Global Biological Policy and Programs at the non-profit Nuclear Threat Initiative and previous to that served in leadership positions at the State Department’s offices of Science and Technology Cooperation (OES/STC), the Science and Technology Adviser to the Secretary of State (E/STAS), and Cooperative Threat Reduction (ISN/CTR).
From 2013–2015, Dr. Hebbeler was Assistant Director for Biological and Chemical Threats at the Obama White House Office of Science and Technology Policy where he oversaw American S&T efforts to combat infectious disease and chemical weapon threats.
Prior to his White House position, Dr. Hebbeler led the State Department’s Biosecurity Engagement Program, a $40M program that prevents terrorist access to potentially dangerous biological materials and dual-use infrastructure and expertise, while supporting efforts to combat infectious disease and enhance public and animal health worldwide.
A topical gel has been developed that simultaneously suppresses inflammation and changes the makeup of bacteria in the mouth by blocking the succinate receptor, helping treat gum disease.
Many biomedical researchers spend their careers searching for big discoveries – the next wonder drug, vaccine, or device that’s going to solve the greatest challenges in modern medicine.
But many monumental findings have small beginnings, routed in foundational R&D and a genuine curiosity about basic biology. Just look at the history of Nobel Prize-worthy discoveries, such as CRISPR-Cas or GFP: These discoveries are, at first, not appreciated for the dramatic, long-term impact that they end up having on biotechnology and medicine.1,2
For the memory prosthetic, the team focused on two specific regions: CA1 and CA3, which form a highly interconnected neural circuit. Decades of work in rodents, primates, and humans have pointed to this neural highway as the crux for encoding memories.
The team members, led by Drs. Dong Song from the University of Southern California and Robert Hampson at Wake Forest School of Medicine, are no strangers to memory prosthetics. With “memory bioengineer” Dr. Theodore Berger—who’s worked on hijacking the CA3-CA1 circuit for memory improvement for over three decades—the dream team had their first success in humans in 2015.
The central idea is simple: replicate the hippocampus’ signals with a digital replace ment. It’s no easy task. Unlike computer circuits, neural circuits are non-linear. This means that signals are often extremely noisy and overlap in time, which bolsters—or inhibits—neural signals. As Berger said at the time: “It’s a chaotic black box.”