Toggle light / dark theme

For instance, when training a gestational age clock model from placental methylation, a sample can only be collected after delivery of the baby and the placenta. So most samples have a gestational age greater than 30 weeks, which corresponds to moderate preterm and full-term births. For samples with a further younger gestational age, they are scarce, which makes the sample distribution seriously biased to large gestational ages and impairs the ability of the trained model to predict small ones. However, differences in gestational age as small as one week can significantly influence neonatal morbidity and mortality and long-term outcomes [18 23]. Hence, the model’s accuracy across the whole gestational age range becomes essential.

To solve this problem, we developed the R package eClock (ensemble-based clock). It improves the traditional machine learning strategy in handling the imbalance problem of category data [24], and combines bagging and SMOTE (Synthetic Minority Over-sampling Technique) methods to adjust the biased age distribution and predict DNAm age with an ensemble model. This is the first time applying these techniques to the clock model, bringing a new framework for clock model construction. eClock also provides other functions, such as training the traditional clock model, displaying features, and converting methylation probe/gene/DMR (DNA methylation region) values. To test the performance of the package, we used 3 different datasets, and the results show that the package can effectively improve the clock model performance on rare samples.

In this video we have a look at a case study of one person who has undergone hTERT gene therapy. The paper does not identify the subject I would guess it is Liz Parrish. The gene therapy was administered two times over a period of five years.

********************************************
Papers mentioned in the video:
Systemic Human Htert Aav Gene Transfer Therapy And The Effect On Telomere Length And Biological Age, A Case Report.
https://maplespub.com/article/systemic-human-htert-aav-gene-…ase-report.

********************************************
Health claims Disclosure: Information provided on this video is not a substitute for direct, individual medical treatment or advice. Please consult with your doctor first. Products or services mentioned in this video are not a recommendation.

Disclosure: Some of the links provided are affiliate links. Although we may receive a small commission from the affiliate, the cost of the product for you will always be the same, or often discounted. Thank you for supporting our channel.

Scientists at the Max Planck Institute for the Science of Light (MPL) and Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen present a large step forward in the characterization of nanoparticles. They used a special microscopy method based on interfereometry to outperform existing instruments. One possible application of this technique may be to identify illnesses.

Nanoparticles are everywhere. They are in our body as , lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as pollutants. At the same time, many drugs are based on the delivery of , including the vaccines we have recently been given. Keeping with the pandemics, quick tests used for the detection the SARS-Cov-2 are based on nanoparticles too. The red line, which we monitor day by day, contains myriads of gold nanoparticles coated with antibodies against proteins that report infection.

Technically, one calls something a nanoparticle when its size (diameter) is smaller than one micrometer. Objects of the order of one micrometer can still be measured in a normal microscope, but particles that are much smaller, say smaller than 0.2 micrometers, become exceedingly difficult to measure or characterize. Interestingly, this is also the size range of viruses, which can become as small as 0.02 micrometers.

When cells reproduce, the internal mechanisms that copy DNA get it right nearly every time. Rice University bioscientists have uncovered a tiny detail that helps understand how the process could go wrong.

Their study of enzymes revealed the presence of a central metal ion critical to DNA replication also appears to be implicated in misincorporation, the faulty ordering of nucleotides on new strands.

The observation reported in Nature Communications could help find treatments for and the diseases they cause, including cancer.

CRISPR-Cas9 is considered a revolutionary gene editing tool, but its applications are limited by a lack of methods by which it can be safely and efficiently delivered into cells. Recently, a research team from Kumamoto University, Japan, have constructed a highly flexible CRISPR-Cas9 carrier using aminated polyrotaxane (PRX) that can not only bind with the unusual structure of Cas9 and carry it into cells, but can also protect it from intracellular degradation by endosomes.

Clustered regularly interspaced short palindromic repeats (CRISPR) and their accompanying protein, CRISPR-associated protein 9 (Cas9), made international headlines a few years ago as a game-changing genome editing system. Consisting of Cas9 and strand of genetic material known as a single-guide RNA (sgRNA), the system can target specific regions of DNA and function as “molecular scissors” to make precise edits. The direct delivery of Cas9–sgRNA complexes, i.e. Cas9 ribonucleoproteins (RNPs), into the nucleus of the cell is considered the safest and most efficient way to achieve genome editing. However, the Cas9 RNP has poor cellular permeability, and thus requires a carrier molecule to transport it past the first hurdle of the cell membrane before it can get to the cell nucleus. These carriers need to bind with Cas9 RNP, carry it into the cell, prevent its degradation by intracellular organelles called “endosomes,” and finally release it without causing any changes to its structure.

In a recent paper published in the June 2022, Volume 27 of Applied Materials Today, a research team from Kumamoto University has developed a transformable polyrotaxane (PRX) carrier that can facilitate genome editing using Cas9RNP with high efficiency and usability. “While there have been some PRX-based drug carriers for and proteins reported before, this is the first report on PRX-based Cas9 RNP carrier. Moreover, our findings describe how to precisely control intracellular dynamics across multiple steps. This will prove invaluable for future research in this direction,” says Professor Keiichi Motoyama, a corresponding author of the paper.

A revolutionary new DNA detection method has helped rediscover an iconic species of turtle last seen more than 25 years ago in a northern Queensland river.

Water samples taken from the lower Burdekin River by a James Cook University-led team of researchers and analyzed for environmental DNA (eDNA) confirmed the presence of the Irwin’s turtle at many sites along the river, which has not been formally recorded in the area for more than 25 years.

The turtle, first discovered in the Burdekin catchment by the late Steve Irwin and his father Bob in the early 1990s, is among a number of freshwater species that uses its cloaca (equivalent to its bum) to breathe while underwater, which allows it to stay submerged underwater for longer.

Discovery, Development & Delivery Of Safe, Effective & Affordable Vaccines For Global Public Health — Dr. Jerome H. Kim, M.D., Director General, International Vaccine Institute (IVI)


Dr. Jerome H. Kim, M.D., is the Director General of the International Vaccine Institute (IVI — https://www.ivi.int/), a nonprofit International Organization established in 1997 as an initiative of the United Nations Development Programme (UNDP), dedicated to the discovery, development and delivery of safe, effective and affordable vaccines for global public health.

IVI is headquartered in Seoul and hosted by the Republic of Korea with 36 member countries and the WHO on its treaty.

Just as countries import a vast array of consumer goods across national borders, so living cells are engaged in a lively import-export business. Their ports of entry are sophisticated transport channels embedded in a cell’s protective membrane. Regulating what kinds of cargo can pass through the borderlands formed by the cell’s two-layer membrane is essential for proper functioning and survival.