Toggle light / dark theme

The microphone sensor can classify bowel diseases using machine learning.

There are many diseases that could potentially be detected through human waste. One such infection includes cholera. Cholera is a bacterial disease.

Cholera is spread through contaminated food and water. Large epidemics that spread the bacterium are related to fecal contamination of water or food. It can sometimes be spread through undercooked shellfish and other seafood-related infections, as well. is spread through contaminated food and water. Large epidemics that spread the bacterium are related to fecal contamination of water or food. It can sometimes be spread through undercooked shellfish and other seafood-related infections, as well.

Alzheimer’s disease is a disease that attacks the brain, causing a decline in mental ability that worsens over time. It is the most common form of dementia and accounts for 60 to 80 percent of dementia cases. There is no current cure for Alzheimer’s disease, but there are medications that can help ease the symptoms.

Researchers in the field of optical spectrometry have created a better instrument for measuring light. This advancement could improve everything from smartphone cameras to environmental monitoring.

The research, led by Finland’s Aalto University, developed a powerful, incredibly small spectrometer that fits on a microchip and is run by artificial intelligence. Their research was recently published in the journal Science.

The study used a relatively new class of super-thin materials known as two-dimensional semiconductors, and the result is a proof of concept for a spectrometer that could be easily integrated into a number of technologies such as quality inspection platforms, security sensors, biomedical analyzers, and space telescopes.

Join the audience for a Women in Medical Physics live webinar at 3 p.m. GMT/10 a.m. EST on 14 December 2022 exploring how to begin a new MR-Linac program for MRIdian in your radiation oncology department.

MRIdian is the world’s first radiation therapy system to integrate a diagnostic-quality MRI with an advanced linear accelerator and the only system with MR-guided, real-time, 3D, multiplanar soft-tissue tracking and automated beam control. MRIdian offers precise and personalized care through on-table adaptive treatments without the need for fiducials. The technological foundations of MRIdian allows for the delivery of ablative dose with tighter margins in five or fewer fractions, all while maintaining low to no toxicity. With tens of thousands of patients treated, and an ever-growing body of clinical evidence, MRIdian is leading the MRI-guided revolution in radiation therapy.

Growing miniature organ-like tissues in the lab is already within our reach. Now, researchers from Japan have developed a new approach that enables intestinal mini-organs to be grown more easily and efficiently in the lab. This holds immense promise for regenerative medicine.

In a study published in November in Cell Reports Methods, researchers from Tokyo Medical and Dental University (TMDU) reveal that applying a few specialized lab techniques yields intestine-like tissues of predictable size and composition.

Organoids are organ-like balls of cells that are grown in the lab from spheroids (even smaller balls) of and mimic the properties of the organ from which the “seed” cell was taken. Organoids are used for studying organ function in a lab setting and are also promising tools in the field of regenerative medicine.

With all the factors that may impact gut health, it can be hard to know what’s causing stomach troubles and potentially affecting long-term wellness.

In a recent TikTok video via Houston Methodist hospital system, gastroenterologist Dr. Neeharika Kalakota shared a few simple rules of thumb she follows to maintain a healthy gut.

As an expert on digestive health, Kalakota said she recommends that her patients stay up-to-date on colon cancer screenings and avoid colonic “cleanses,” which can wreak havoc on the bowel and rectum.

According to a meta-analysis recently published in Neurology, the medical journal of the American Academy of Neurology, higher exposure to a certain type of traffic-related air pollution known as particulate matter may be connected to an increased risk of dementia. Researchers focused on fine particulate matter, or PM2.5, which is made up of airborne pollutants with a diameter of fewer than 2.5 microns. The meta-analysis examined all available studies on the relationship between air pollution and dementia risk.

“As people continue to live longer, conditions like dementia are becoming more common, so detecting and understanding preventable risk factors is key to reducing the increase of this disease,” said study author Ehsan Abolhasani, MD, MSc, of Western University in London, Canada. “Since a report by the World Health Organization showed that more than 90% of the world population is living in areas with higher than recommended levels of air pollution, our results provide more evidence for enforcing regulations for air quality and accelerating the transition from fossil fuels to sustainable energies.”

17 studies were analyzed by the researchers for the meta-analysis. Participants had a minimum age of 40. More than 91 million individuals took part in all the studies. 5.5 million of them, or 6%, developed dementia.

Even worms have a ticking fertility clock. Older worms are less efficient at repairing broken DNA strands while making egg cells—part of a process that’s essential for fertility. A new study from University of Oregon (UO) biologists suggests one possible reason that reproduction slows with age.

Researchers from the lab of Diana Libuda report the findings in a paper published Nov. 7 in PLOS Genetics.

Each sperm or egg cell has only half the number of chromosomes found in a regular cell. During meiosis, the cell division process that forms sperm and eggs, the parent cells must evenly divide their DNA. The costs of error can be high, since incorrectly divided chromosomes are a major cause of birth defects.

Scientists from EPFL and the University of Lausanne have used a chip that was originally designed for environmental science to study the properties of biocement formation. This material has the potential to replace traditional cement binders in certain civil engineering applications.

The chip is the size of a credit card and its surface is engraved with a flow channel measuring one meter from end to end that is as thick as a human hair. Researchers can inject a solution into one end of the channel and, with the help of time-lapse microscopy, observe the solution’s behavior over several hours. Medical scientists have used similar chips for health care applications, such as to examine how arteries get clogged or how a drug spreads into the bloodstream, while environmental engineers have applied them to the study of biofilms and contaminants in drinking water.

Now, a team of civil engineers at EPFL’s Laboratory of Soil Mechanics (LMS), together with scientists from the Faculty of Geosciences and Environment at the University of Lausanne (UNIL), have repurposed the chip to understand complex transport-reaction phenomena involved in the formation of new kinds of biocement.