Toggle light / dark theme

An unusual protein structure known as a “rippled beta sheet,” first predicted in 1953, has now been created in the laboratory and characterized in detail using X-ray crystallography.

The new findings, published in July in Chemical Science, may enable the rational design of unique materials based on the rippled sheet architecture.

“Our study establishes the rippled beta sheet layer configuration as a motif with general features and opens the road to structure-based design of unique molecular architectures, with potential for materials development and ,” said Jevgenij Raskatov, associate professor of chemistry and biochemistry at UC Santa Cruz and corresponding author of the paper.

The skin is one of the largest and most accessible organs in the human body, but penetrating its deep layers for medicinal and cosmetic treatments still eludes science.

Although there are some remedies—such as nicotine patches to stop smoking—administered through the skin, this method of treatment is rare since the particles that penetrate must be no larger than 100 nanometers. Creating effective tools using such tiny particles is a great challenge. Because the particles are so small and difficult to see, it is equally challenging to determine their exact location inside the body—information necessary to ensure that they reach intended target tissue. Today such information is obtained through invasive, often painful, biopsies.

A novel approach, developed by researchers at Bar-Ilan University in Israel, provides an innovative solution to overcoming both of these challenges. Combining techniques in nanotechnology and optics, they produced tiny (nanometric) diamond particles so small that they are capable of penetrating skin to deliver medicinal and cosmetic remedies. In addition, they created a safe, laser-based optical method that quantifies nanodiamond penetration into the various layers of the skin and determines their location and concentration within body tissue in a non-invasive manner—eliminating the need for a biopsy.

A multidisciplinary team of Indiana University researchers have discovered that the motion of chromatin, the material that DNA is made of, can help facilitate effective repair of DNA damage in the human nucleus—a finding that could lead to improved cancer diagnosis and treatment. Their findings were recently published in the Proceedings of the National Academy of Sciences.

DNA damage happens naturally in and most of the damage can be repaired by the cell itself. However, unsuccessful repair could lead to cancer.

“DNA in the nucleus is always moving, not static. The motion of its high-order complex, chromatin, has a direct role in influencing DNA repair,” said Jing Liu, an assistant professor of physics in the School of Science at IUPUI. “In yeast, past research shows that DNA damage promotes chromatin motion, and the high mobility of it also facilitates the DNA repair. However, in human cells this relationship is more complicated.”

The infrared (IR) spectrum is a vast information landscape that modern IR detectors tap into for diverse applications such as night vision, biochemical spectroscopy, microelectronics design, and climate science. But modern sensors used in these practical areas lack spectral selectivity and must filter out noise, limiting their performance. Advanced IR sensors can achieve ultrasensitive, single-photon level detection, but these sensors must be cryogenically cooled to 4 K (−269 C) and require large, bulky power sources making them too expensive and impractical for everyday Department of Defense or commercial use.

DARPA’s Optomechanical Thermal Imaging (OpTIm) program aims to develop novel, compact, and room-temperature IR sensors with quantum-level performance – bridging the performance gap between limited capability uncooled thermal detectors and high-performance cryogenically cooled photodetectors.

“If researchers can meet the program’s metrics, we will enable IR detection with orders-of-magnitude improvements in sensitivity, spectral control, and response time over current room-temperature IR devices,” said Mukund Vengalattore, OpTIm program manager in DARPA’s Defense Sciences Office. “Achieving quantum-level sensitivity in room-temperature, compact IR sensors would transform battlefield surveillance, night vision, and terrestrial and space imaging. It would also enable a host of commercial applications including infrared spectroscopy for non-invasive cancer diagnosis, highly accurate and immediate pathogen detection from a person’s breath or in the air, and pre-disease detection of threats to agriculture and foliage health.”

A multi-institute research team led by BGI-Research has used BGI Stereo-seq technology to construct the world first spatiotemporal cellular atlas of the axolotl (Ambystoma mexicanum) brain development and regeneration, revealing how a brain injury can heal itself. The study was published as a cover story in the latest issue of Science.

The research team analyzed the development and regeneration of salamander brain, identified the key neural stem cell subsets in the process of salamander brain regeneration, and described the reconstruction of damaged neurons by such stem cell subsets. At the same time, the team also found that brain regeneration and development have certain similarities, providing assistance for cognitive brain structure and development, while offering new directions for research and treatment of the nervous system.

In contrast to mammals, some vertebrates have the ability to regenerate multiple organs, including parts of the central nervous system. Among them, the axolotl can not only regenerate organs such as limbs, tail, eyes, skin and liver, but also the brain. The axolotl is evolutionarily advanced compared to other teleost, such as zebrafish, and its brain features a higher similarity to mammalian brain structure. Therefore, this study used the axolotl as an ideal model organism for research into brain regeneration.

Scientists from the Janelia Campus at Howard Hughes Medical Institute have made a surprising discovery, and it might help explain how brain cells communicate long-term changes to each other. Their findings, reported in the journal Cell, describe a new synapse between axons and primary cilia – hair-like structures present on different cell types including neurons.

Synapses normally span between the axon of one neuron and the dendrite of another, however, the new findings suggest that axons could take an alternative, shorter route and connect to special junctions of primary cilia to rapidly signal information to the cell’s nucleus, forming a new kind of synapse not seen before.

“This special synapse represents a way to change what is being transcribed or made in the nucleus, and that changes whole programs,” Janelia Senior Group Leader David Clapham, whose team led the new research, said in a statement.

Imagine being able to take a medicine that prevents the decline that comes with age and keeps you healthy. Scientists are searching for drugs that have these effects. The current most promising anti-aging drug is Rapamycin. It is known for its positive effects on life and health span in experimental studies with laboratory animals. It is often given lifelong to obtain the maximum beneficial effects of the drug. However, even at the low doses used in the prevention of age-related decline, negative side effects may occur. Plus, it is always desirable to use the lowest effective dose. A research group at the Max Planck Institute for Biology of Aging in Cologne, Germany, has now shown in laboratory animals that brief exposure to rapamycin has the same positive effects as lifelong treatment. This opens new doors for a potential application in humans.

Research scientists are increasingly focused on combating the negative effects of aging. Lifestyle changes can improve the health of older people, but these alone are not sufficient to prevent the ills of older age. Repurposing existing medications for ‘geroprotection’ is providing an additional weapon in the prevention of age-related decline.

Currently, the most promising anti-aging drug is rapamycin, a cell growth inhibitor and immunosuppressant that is normally used in cancer therapy and after organ transplantations. “At the doses used clinically, rapamycin can have undesirable side effects, but for the use of the drug in the prevention of age-related decline, these need to be absent or minimal. Therefore, we wanted to find out when and how long we need to give rapamycin in order to achieve the same effects as lifelong treatment,” explains Dr. Paula Juricic. She is the leading investigator of the study in the department of Prof. Linda Partridge, director at the Max Planck Institute for Biology of Aging.

Summary: Sleep age, a projected age that correlates to a person’s sleep health, may be a predictor of overall health and mortality risk.

Source: Stanford.

Numbers tell a story. From your credit score to your age, metrics predict a variety of outcomes, whether it’s your likelihood to get a loan or your risk for heart disease. Now, Stanford Medicine researchers have described another telling metric—one that can predict mortality. It’s called sleep age.

Novo Nordisk’s recent growth renaissance has arrived thanks in no small part to semaglutide—the GLP-1 molecule behind the company’s leading marketed trio of Ozempic, Rybelsus and Wegovy.

These days, much of the semaglutide hype surrounds Ozempic’s domination in diabetes, plus Wegovy’s potential to stir the slumbering giant that is the global obesity market. But even as the molecule’s metabolic empire prospers, Novo Nordisk isn’t letting its GLP-1 stay in its comfort zone. Novo is also pitting the drug against a pair of elusive targets: nonalcoholic steatohepatitis (NASH) and Alzheimer’s disease.

And while CEO Lars Fruergaard Jørgensen is quick to admit the company’s ambitions in these new diseases are among Novo’s “most risky” R&D endeavors, the payoff for patients could be “tremendous,” he said during a recent interview at Novo Nordisk’s headquarters in Plainsboro, New Jersey.