Toggle light / dark theme

Scientists Discover How To Generate New Neurons in the Adult Brain

A team of biologists has discovered how to awaken neural stem cells and reactivate them in adult mice.

Some areas of the adult brain contain quiescent, or dormant, neural stem cells that can potentially be reactivated to form new neurons. However, the transition from quiescence to proliferation is still poorly understood. A team led by scientists from the Universities of Geneva (UNIGE) and Lausanne (UNIL) has discovered the importance of cell metabolism in this process and identified how to wake up these neural stem cells and reactivate them. Biologists succeeded in increasing the number of new neurons in the brain of adult and even elderly mice. These results, promising for the treatment of neurodegenerative diseases, are to be discovered in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Beyond COVID vaccines: what’s next for lipid nanoparticles?

Lipid nanoparticles (LNPs) transport small molecules into the body. The most well-known LNP cargo is mRNA, the key constituent of some of the early vaccines against COVID-19. But that is just one application: LNPs can carry many different types of payload, and have applications beyond vaccines.

Barbara Mui has been working on LNPs (and their predecessors, liposomes) since she was a PhD student in Pieter Cullis’s group in the 1990s. “In those days, LNPs encapsulated anti-cancer drugs,” says Mui, who is currently a senior scientist at Acuitas, the company that developed the LNPs used in the Pfizer-BioNTech mRNA vaccine against SARS-CoV-2. She says it soon became clear that LNPs worked even better as carriers of polynucleotides. “The first one that worked really well was encapsulating small RNAs,” Mui recalls.

But it was mRNA where LNPs proved most effective, primarily because LNPs are comprised of positively charged lipid nanoparticles that encapsulate negatively charged mRNA. Once in the body, LNPs enter cells via endocytosis into endosomes and are released into the cytoplasm. “Without the specially designed chemistry, the LNP and mRNA would be degraded in the endosome,” says Kathryn Whitehead, professor in the departments of chemical engineering and biomedical engineering at Carnegie Mellon University.

AGI Soon? 1 AI Using 2 Modalities Solves Visual IQ Test w/ 1,600,000,000 Parameters | Kosmos-1

Premium Robots: https://taimine.com/
Deep Learning AI Specialization: https://imp.i384100.net/GET-STARTED
A new multimodal artificial intelligence model from Microsoft called Kosmos-1 is able to process both text and visual data to the point of passing a visual IQ test with 26 percent accuracy, and researchers say this is a step towards AGI. Stable Diffusion AI can now read brain waves to reconstruct images that people are thinking about. Stanford has created a world record brain computer interface device with the help of AI to allow patients to type 62 words per minute with their thoughts.

AI News Timestamps:
0:00 Microsoft Kosmos-1 AI & AGI
3:34 AI Neuroscience Tech Reads Brain Waves.
5:43 AI & BCI Breaks Record.

#technology #tech #ai

Forget designer babies. Here’s how CRISPR is really changing lives

Forget about He Jiankui, the Chinese scientist who created gene-edited babies. Instead, when you think about gene editing you should think of Victoria Gray, the African-American woman who says she’s been cured of her sickle-cell disease symptoms.

This week in London, scientists are gathering for the Third International Summit on Human Genome Editing. It’s gene editing’s big event, where researchers get to awe the audience with their new ability to modify DNA—and ethicists get to worry about what it all means.

PLEASURE GENERATORS in the Brain: The Neuroscience of Pleasure Explained

Brave new world let’s create happiness for everyone by putting microelectrode arrays in our brains but be careful not to create a situation like death by ecstacy by Larry Niven.


In the brain, pleasure is generated by a handful of brain regions called, “hedonic hotspots.” If you were to stimulate these regions directly, you would likely feel pleasurable sensations. However, not all of the hedonic hotspots are the same–some generate the raw sensations of pleasure whereas others are responsible for consciously interpreting and elaborating on the raw pleasure produced by the other hotspots. In this video, in addition to exploring the neuroscience of pleasure, we’ll see how understanding pleasure, happiness, meaning, and purpose can help us live better lives.

Follow @senseofmindshow for more neuroscience explainers.
Follow on Social Media: https://linktr.ee/senseofmind.

-
Chapters.
00:00 Hedonic hotspots: the brain’s pleasure generators.
00:56 The evolution of pleasure.
01:46 How the brain generates pleasure.
03:07 The subcortical (‘core’) pleasure network.
04:08 The cortical (‘higher’) pleasure network.
05:09 The orbitofrontal cortex’ role and the abstract to concrete pleasure gradient.
08:13 How to be happier by understanding the neuroscience of pleasure.
11:40 Summary.

-

Scientists Believe ‘Organoid Intelligence’ Is the Future of Computing

Scientists Believe, ‘Organoid Intelligence’, Is the Future of Computing. CNN reports that as part of a new field called “organoid intelligence,” a computer powered by human brain cells could shape the future. Organoids are lab-grown tissues capable of brain-like functions, such as forming a network of connections. Brain organoids were first grown in 2012 by Dr. Thomas Hartung, a professor of environmental health and engineering, by altering human skin samples. Brain organoids were first grown in 2012 by Dr. Thomas Hartung, a professor of environmental health and engineering, by altering human skin samples. Computing and artificial intelligence have been driving the technology revolution but they are reaching a ceiling., Dr.

Dr. Moupali Das, MD, MPH — Gilead Sciences — Dedicated To Ending The HIV Epidemic

Dedicated to ending the HIV epidemic — dr. moupali das, MD, MPH, executive director, HIV clinical research, gilead sciences.


Dr. Moupali Das, MD, MPH, is Executive Director, HIV Clinical Research, in the Virology Therapeutic Area, at Gilead Sciences (https://www.gilead.com/), where she leads the pre-exposure prophylaxis (PrEP) clinical drug development program, including evaluating the safety and efficacy of a long-acting, twice yearly, subcutaneous injection being studied for HIV prevention. Her responsibilities also include expanding the populations who may benefit from PrEP.

Dr. Das has led high-performing teams in academic medicine, public health, implementation science, and cross-functionally in drug development. She has successfully helped develop, implement, and evaluate how to better test, link to care, increase virologic suppression, and improve quality of life for people with HIV, and to prevent HIV in those who may benefit from PrEP.

During the COVID19 pandemic, Dr. Das assisted her colleagues in the COVID-19 treatment program, leading the evaluation of a COVID-19 treatment for use in pregnant women and children from the compassionate use program.

After completing her undergraduate degree in Biochemical Sciences at Harvard College, medical school and internal medicine residency training at Columbia University and New York Presbyterian Hospital, Dr. Das came to University of California, San Francisco (UCSF) for fellowship training in Infectious Diseases and to University of California, Berkeley for her MPH in Epidemiology. She cared for HIV patients at San Francisco General’s storied Ward 86 clinic and attended on the inpatient ID Consult Service. She is recognized internally and externally for her expertise in epidemiology, public health, advocacy, and community engagement.

Trapping and killing superbugs with novel peptide ‘nanonets’

National University of Singapore (NUS) pharmaceutical scientists have developed synthetic peptide nanonets for treating infections by bacteria strains resistant to last-resort antibiotics.

In nature, trap-and-kill is a common immune defense mechanism employed by various species, including humans. In response to the presence of pathogens, peptides are released from host cells and they promptly self-assemble in solution to form cross-linked nanonets, which then entrap the bacteria and render them more vulnerable to antimicrobial components.

Several research groups have explored synthetic biomimetics of nanonets as an avenue for addressing the global healthcare challenge of widespread . However, most prominent studies in the field only yielded disjointed short nanofibrils restricted to the bacterial surfaces and are incapable of physically immobilizing the bacteria. Additionally, these designs were lacking in control over the initiation of the self-assembly process.

Longevity company Biophysical Therapeutics emerges from stealth

Biophysical Therapeutics, a drug discovery platform company that leverages computational biology, has emerged from stealth. The primary targets of the Delaware-based company are cancer, the diseases of aging (including Alzheimer’s disease) and – excitingly – aging itself.

Founded by Dr Michael Forrest, a Cambridge University biochemistry graduate with a PhD in computer science, Biophysical Therapeutics boasts renowned biotech entrepreneur Professor George Church (of Harvard Medical School) as an advisor to the company. Professor Bruno Conti of the Scripps Institute in La Jolla, California is also an advisor.

Longevity. Technology: Back in 2006, Conti and his team reported an exciting result in the prestigious journal Science. They showed (in female mice) that slightly reducing the metabolic rate by slightly reducing metabolic heat generation (decreasing body temperature by 0.34°C) increased lifespan by 20%.

Anti-aging Supplements: Science, Snake Oil, and How Do We Know?

🇬🇧FREE WEBINAR🇮🇹: https://draronica.com/free-webinar/

In this Ask Me Anything interview, Prof. Matt Kaeberlein discusses the evidence (and lack thereof) behind popular anti-aging supplements and interventions. Starting from his current research on rapamycin for healthy longevity in dogs (The Dog Aging Project), he describes the promises and perils of anti-aging medicine and shares with us some tips on how to become better critical thinkers and protect us from hype and snake oil.

This interview is a must watch for everyone who wants to develop a critical stance toward the field of longevity research and balance enthusiasm with evidence.

I hope you enjoy this interview!

TIMESTAMPS
00:00 Introduction.
04:33 Definitions: Aging, lifespan, healthspan.
09:08 What is biohacking.
14:56 The Dog Aging project.
19:39 Rapamycin: Longevity effects in mice.
22:28 Can rapamycin impair muscle growth? Is it in contraindicated for people who want to build muscle mass?
27:09 Exercise, inhibition of mTor, and rationale for cycling rapamycin and exercise.
29:46 Getting around the growth vs. resilience tradeoff in longevity.
32:00 Epigenetic clocks: Hope vs. hype.
32:43 Best functional markers of longevity.
36:30 Sterile inflammation, auto-immunity, and immune senescence.
40:24 The best and worst longevity supplements for Matt Kaeberlein.
45:50 What longevity hacks Matt implements in his own life.
48:00 Lucia’s and Matt’s thoughts on calorie restriction for longevity.
50:30 How can people discriminate between science and sneak oil?

🐶 The Dog Aging project: https://dogagingproject.org/

/* */