Toggle light / dark theme

Correction & clarification: A prior version of this story contained inaccurate information. Pancreatic cancer is poised to pass colon cancer as the second deadliest tumor type.

Barbara Brigham was having a very bad 2020.

Her 97-year-old mother, whom she’d cared for years, died in January. Her husband, who’d suffered the ill effects of Agent Orange since his tours of duty in Vietnam, died of cancer in June. In September, she was diagnosed with pancreatic cancer, which has a five-year survival rate of only around 10%.

Circa 2019


This study assessed the safety and efficacy of deep tissue laser therapy on the management of pain, functionality, systemic inflammation, and overall quality of life of older adults with painful diabetic peripheral neuropathy.

The effects of deep tissue laser therapy (DTLT) were assessed in a randomized, double-masked, sham-controlled, interventional trial. Forty participants were randomized (1:1) to receive either DTLT or sham laser therapy (SLT). In addition to the standard-of-care treatment, participants received either DTLT or SLT twice weekly for 4 weeks and then once weekly for 8 weeks (a 12-week intervention period). The two treatments were identical, except that laser emission was disabled during SLT. Assessments for pain, functionality, serum levels of inflammatory biomarkers, and quality of life (QOL) were performed at baseline and after the 12-week intervention period. The results from the two treatments were compared using ANOVA in a pre-test-post-test design.

All participants randomized to the DTLT group and 85% (17 of 20) of participants randomized to the SLT group completed the trial. No significant differences in baseline characteristics between the groups were observed. After the 12-week intervention period, pain levels significantly decreased in both groups and were significantly lower in the DTLT group than in the SLT group. The Timed Up and Go test times (assessing functionality) were significantly improved in both groups and were 16% shorter in the DTLT group than in the SLT group. Serum levels of IL-6 decreased significantly in both groups. Additionally, serum levels of MCP-1 decreased significantly in the DTLT group but not in the SLT group. Patients’ quality of life improved significantly in the DTLT group but not in the SLT group.

Molecular computing is a promising area of study aimed at using biological molecules to create programmable devices. This idea was first introduced in the mid-1990s and has since been realized by several computer scientists and physicists worldwide.

Researchers at East China Normal University and Shanghai Jiao Tong University have recently developed molecular convolutional (CNNs) based on synthetic DNA regulatory circuits. Their approach, introduced in a paper published in Nature Machine Intelligence, overcomes some of the challenges typically encountered when creating efficient artificial neural networks based on molecular components.

“The intersection of computer science and is a fertile ground for new and exciting science, especially the design of intelligent systems is a longstanding goal for scientists,” Hao Pei, one of the researchers who carried out the study, told TechXplore. “Compared to the brain, the scale and computing power of developed DNA neural networks are severely limited, due to the size limitations. The primary objective of our work was to scale up the computing power of DNA circuits by introducing a suitable model for DNA molecular systems.”

A DEADLY virus that kills 30 per cent of those it infects by making them bleed from the eyes has reached Spain after a man was hospitalised last week.

The man in the city of Leon, in Spain’s North West, was diagnosed with Crimean-Congo haemorrhagic fever (CCHF) after being bitten by a tick.

The unnamed patient was hospitalised last week in Leon before being airlifted to another hospital by the Ministry of Defence on Thursday.

Interested in learning what’s next for the gaming industry? Join gaming executives to discuss emerging parts of the industry this October at GamesBeat Summit Next. Register today.

The world of technology is rapidly shifting from flat media viewed in the third person to immersive media experienced in the first person. Recently dubbed “the metaverse,” this major transition in mainstream computing has ignited a new wave of excitement over the core technologies of virtual and augmented reality. But there is a third technology area known as telepresence that is often overlooked but will become an important part of the metaverse.

While virtual reality brings users into simulated worlds, telepresence (also called telerobotics) uses remote robots to bring users to distant places, giving them the ability to look around and perform complex tasks. This concept goes back to science fiction of the 1940s and a seminal short story by Robert A. Heinlein entitled Waldo. If we combine that concept with another classic sci-fi tale, Fantastic Voyage (1966), we can imagine tiny robotic vessels that go inside the body and swim around under the control of doctors who diagnose patients from the inside, and even perform surgical tasks.