Toggle light / dark theme

At first glance, the human body looks symmetrical: two arms, two legs, two eyes, two ears, even the nose and mouth appear to be mirrored on an imaginary axis dividing the faces of most people. And finally, the brain: it is divided into two halves that are roughly the same size, and the furrows and bulges also follow a similar pattern.

But the first impression is deceptive: the different regions have subtle yet functionally relevant differences between the left and right sides. The two hemispheres are specialized for different functions. Spatial attention, for example, is predominantly processed in the in most people, while language is largely processed in the left. This way, work can be distributed more effectively to both halves and thus the range of tasks is expanded overall.

But this so-called lateralization, the tendency for brain regions to process certain functions more in the left or right hemisphere, varies from person to person. And not only in the minority whose brains are specialized mirror-inverted compared to the majority. Even people with classically arranged brains differ in how pronounced their asymmetry is.

If smoke indicates a fire, nitric oxide signals inflammation. The chemical mediator promotes inflammation, but researchers suspect it can do its job too well after anterior cruciate ligament (ACL) ruptures and related injuries and initiate early onset osteoarthritis. Typically, the degenerative disease is only diagnosed after progressive symptoms, but it potentially could be identified much earlier through nitric oxide monitoring, according to Huanyu “Larry” Cheng, James E. Henderson Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State.

Cheng and his student, Shangbin Liu, who earned a master’s degree in engineering science and mechanics at Penn State this year, collaborated with researchers based in China to develop a flexible biosensor capable of continuous and wireless nitric detection in rabbits. They published their approach in the Proceedings of the National Academy of Sciences.

“Real-time assessment of biomarkers associated with inflammation, such as nitric oxide in the joint cavity, could indicate pathological evolution at the initial development of osteoarthritis, providing essential information to optimize therapies following traumatic knee injury,” Cheng said.

A novel hormone combination has been created by a research team from Helmholtz Munich, the German Center for Diabetes Research (DZD), and Novo Nordisk for the potential treatment of type 2 diabetes in the future. The researchers combined the blood sugar-lowering actions of the medications tesaglitazar and GLP-1 (Glucagon-like peptide-1) to create a new and extremely effective drug.

The benefit of combining Tesaglitazar with GLP-1 is that the Tesaglitazar only penetrates the tissue with GLP-1 receptors. This increases the effects on sugar metabolism while lessening the side effects of tesaglitazar. Scientists have already successfully tested the new drug in animal studies. The study was recently published in the journal Nature Metabolism.

Tesaglitazar enhances glucose and fat metabolism in type 2 diabetic patients. It increases insulin sensitivity by acting on two receptors inside the cell nucleus. This was demonstrated in phase 3 clinical trials. However, tesaglitazar has side effects such as kidney damage.

In nature, evolutionary chromosomal changes may take a million years, but scientists have recently reported a novel technique for programmable chromosome fusion that has successfully created mice with genetic changes that occur on a million-year evolutionary scale in the laboratory. The findings might shed light on how chromosomal rearrangements – the neat bundles of structured genes provided in equal numbers by each parent, which align and trade or mix characteristics to produce offspring – impact evolution.

In a study published in the journal Science, the researchers show that chromosome level engineering is possible in mammals. They successfully created a laboratory house mouse with a novel and sustainable karyotype, offering crucial insight into how chromosome rearrangements may influence evolution.

“The laboratory house mouse has maintained a standard 40-chromosome karyotype — or the full picture of an organism’s chromosomes — after more than 100 years of artificial breeding,” said co-first author Li Zhikun, researcher in the Chinese Academy of Sciences (CAS) Institute of Zoology and the State Key Laboratory of Stem Cell and Reproductive Biology. “Over longer time scales, however, karyotype changes caused by chromosome rearrangements are common. Rodents have 3.2 to 3.5 rearrangements per million years, whereas primates have 1.6.”

IRVINE, Calif., Sept. 13, 2022 /PRNewswire/ — AIVITA Biomedical, Inc., a biotech company specializing in innovative cell applications, today announced that chairman and CEO Hans Keirstead, Ph.D., will deliver a keynote address at AI for Good, a program dedicated to achieving the United Nations Sustainable Development Goals through practical AI applications. Details for the keynote are as follows:

Keynote title: AI in healthcare is an infant. Intelligence augmentation is an athlete. When: Wednesday, September 14, 2022, 15:00 CEST (9:00 EDT) Where: Switzerland — Virtual Presentation

The AI for Good meeting is organized by the International Telecommunication Union (ITU), the United Nations specialized agency for information and communication technologies, in partnership with 40 United Nations sister agencies.

The biotech platform that is leveraging one of the cornerstones of evolution – mitochondria.

Mitochondria play a crucial role in the aging process, activating factors and metabolic pathways involved in longevity. Their dysfunction impacts on both lifespan and healthspan, and whilst they have been identified as disease targets for some time, mitochondria have proven difficult to treat.

The founders of cellvie wondered if it were possible, as they put it, to leverage one of the cornerstones of evolution – to replace and augment damaged mitochondria. And so, the concept of Therapeutic Mitochondria Transplantation was born. TMT holds the potential of sustainably affecting mitochondria function, and reinvigorating or amplifying the cellular energy metabolism – and having raised $5 million in Kizoo-led seed funding, cellvie is on the way to turning that possibility into a reality.

Dr Alex Schueller, Cellvie’s CEO, will be speaking at Berlin’s Rejuvenation Startup Summit (14−15 October 2022), as part of an all-star line-up that includes Michael Greve, Eric Verdin, Brian Kennedy, Michael Sidler, Christian Angermayer and our own Phil Newman. Hosted by the Forever Healthy Foundation, this vibrant networking event aims to accelerate the development of the rejuvenation biotech industry.

Visit Longevity. Technology — https://bit.ly/3PwtH8Y

Follow Longevity. Technology on:

With the aid of physics and a minuscule magnet, researchers have discovered a new structure of telomeric DNA. Telomeres are sometimes seen as the key to living longer. They protect genes from damage but get a bit shorter each time a cell divides. If they become too short, the cell dies. The new discovery will help us understand aging and disease.

Physics is not the first scientific discipline that springs to mind at the mention of DNA. But John van Noort from the Leiden Institute of Physics (LION) is one of the scientists who found the new DNA structure. A biophysicist, he uses methods from physics for biological experiments. This also caught the attention of biologists from Nanyan Technological University in Singapore. They asked him to help study the DNA structure of . They have published the results in Nature.

To begin with, it will only run at a fraction of its eventual three-quadrillion-watt maximum output.

A laser at the University of Michigan, which is set to be the most powerful in the United States, is preparing to send its first laser pulses into an experimental target, a press statement explains.

The laser, named the Zetawatt-Equivalent Ultrashort pulse laser System, or Zeus, will be used to investigate quantum physics as well as outer space. It is hoped studies using the laser will also help to build new technologies in electronics and medicine.

Only two of the top 10 billionaires registered gains.

The world’s top richest people collectively lost $50 billion of their personal fortune as the New York Stock Exchange slumped on Tuesday amidst fears of rising inflation and looming inflation. Elon Musk, Jeff Bezos, Warren Buffet, Google Guys, nobody was spared as prices of stock held by them tumbled, Market Insider.


1, 2

Even as most people struggled to balance their work and life during the pandemic, the world’s top billionaires were struck gold and saw their fortunes soar. According to a CBS report in 2021, the first year of the pandemic gave a $4 trillion boost to the billionaires’ wealth, raising the call for a “wealth tax.”