Toggle light / dark theme

Study examines brain aging in people with schizophrenia

People suffering from schizophrenia can expect to die 15 years sooner than they ordinarily would. A new study has now found that this could be partly caused by advanced brain aging. The research findings were published in the journal Molecular Psychiatry.

Schizophrenia is associated with an increased risk of premature death, partially as a result of suicide or poor physical health. Studies to date have suggested that the high prevalence of disease, long-term and excess deaths in people with schizophrenia could in part be caused when their brain’s biological age overtakes the .

According to a few small-scale studies, this discrepancy called brain-predicted age difference (brain-PAD) has been found to be consistently higher in schizophrenic patients compared to healthy individuals. The studies have also shown that the gap between the two ages mainly widens during the first years after the onset of the illness.

Resting Heart Rate, Heart Rate Variability: What’s Optimal, 1600+ Days of Data

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Bristle Discount Link (Oral Microbiome Quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Quantify Discount Link (At-Home Blood Testing):
https://getquantify.io/mlustgarten.

Cronometer Discount Link (Daily Diet Tracking):
https://shareasale.com/r.cfm?b=1390137&u=3266601&m=61121&urllink=&afftrack=

If you’d like to support the channel, you can do that with the website.

A Biological Wonder: Harvard Researchers Discover Embryonic Origins of Adult Pluripotent Stem Cells

Stem cells are a remarkable biological wonder that have the ability to repair, replace and regenerate cells. In most animals and humans, stem cells are limited to generating only specific types of cells. For example, hair stem cells will only produce hair, and intestine stem cells will only produce intestines. However, many distantly-related invertebrates.

Invertebrates are animals that do not have a backbone. They make up the majority of the animal kingdom and include animals such as insects, worms, mollusks, and arachnids. Invertebrates are found in almost every habitat on Earth, from the depths of the oceans to the highest mountains. They play important roles in the ecosystem as decomposers, pollinators, and as a food source for other animals. Invertebrates have a wide range of body shapes, sizes, and behaviors, and they have evolved a variety of ways to survive and thrive in their environments.

How one woman’s ‘immortal’ cells changed the world

In 1951, Henrietta Lacks, a young black woman from Baltimore, died of cancer. However, before her death a small sample of her cells were taken from her without her knowledge, and these cells did not die. Unlike every other previous sample of human cells, these continued to grow and multiply and still do so today. The HeLa cells became the first ‘immortalised human cell line’ and have helped both save and create millions of lives ever since. Video by Dan John Animation by Lily Baker.

DensePose: DensePose was introduced in 2018 and aims to map human pixels in an RGB image to the 3D surface of the human body

Synced has previously covered additional research on the use of WiFi signals for human pose and action recognition through walls and the associated risks of such technologies.

Please note that the DensePose-COCO and DensePose-PoseTrack datasets are distributed under NonCommercial Creative Commons license.


Dense human pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the human body.

How Artificial Intelligence Found the Words To Kill Cancer Cells

Scientists at the University of California, San Francisco (UCSF) and IBM Research have created a virtual library of thousands of “command sentences” for cells using machine learning. These “sentences” are based on combinations of “words” that direct engineered immune cells to find and continuously eliminate cancer cells.

This research, which was recently published in the journal Science, is the first time that advanced computational techniques have been applied to a field that has traditionally progressed through trial-and-error experimentation and the use of pre-existing molecules rather than synthetic ones to engineer cells.

The advance allows scientists to predict which elements – natural or synthesized – they should include in a cell to give it the precise behaviors required to respond effectively to complex diseases.

Researchers develop new, more accurate computational tool for long-read RNA sequencing

On the journey from gene to protein, a nascent RNA molecule can be cut and joined, or spliced, in different ways before being translated into a protein. This process, known as alternative splicing, allows a single gene to encode several different proteins. Alternative splicing occurs in many biological processes, like when stem cells mature into tissue-specific cells. In the context of disease, however, alternative splicing can be dysregulated. Therefore, it is important to examine the transcriptome—that is, all the RNA molecules that might stem from genes—to understand the root cause of a condition.

However, historically it has been difficult to “read” RNA molecules in their entirety because they are usually thousands of bases long. Instead, researchers have relied on so-called short-read RNA sequencing, which breaks RNA molecules and sequence them in much shorter pieces—somewhere between 200 to 600 bases, depending on the platform and protocol. Computer programs are then used to reconstruct the full sequences of RNA molecules.

Short-read RNA sequencing can give highly accurate sequencing data, with a low per-base error rate of approximately 0.1% (meaning one base is incorrectly determined for every 1,000 bases sequenced). Nevertheless, it is limited in the information that it can provide due to the short length of the sequencing reads. In many ways, short-read RNA sequencing is like breaking a large picture into many jigsaw pieces that are all the same shape and size and then trying to piece the picture back together.

In the core of the cell: New insights into the utilization of nanotechnology-based drugs

Novel drugs, such as vaccines against COVID-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was not clarified for a long time.

Scientists at the Max Planck Institute for Polymer Research have now followed the path of such a particle into a cell using a combination of several microscopy methods. They were able to observe a cell-internal process that effectively separates blood components and .

Nanoparticles are a current field of research and it is impossible to imagine without them. They serve as microscopic drug capsules that are less than a thousandth of a millimeter in diameter. Among other things, they are used in current vaccines against COVID-19 to effectively deliver active ingredients to where they are actually needed. In most cases, the capsules dock onto cells, are enveloped by them, and are absorbed into them. Inside the cell, can then open the capsules, releasing the active ingredient.

Preventative drug shown to stop spread of cancer as study on mice finds ‘90% effectiveness’

Metastasisation — the spreading of cancer cells from the primary tumour into surrounding body tissues and organs — is the leading cause of death in cancer patients. Now a new study has found a potential way to stop these cancer cells from entering a person’s blood. Scientists from Israel are working to produce the world’s first preventative drug to help stop tumours that cause secondary cancer, as reported byThe Times of Israel.