Toggle light / dark theme

Researchers have experimentally demonstrated, for the first time, a mechanically flexible silver mesh that is visibly transparent, allows high-quality infrared wireless optical communication and efficiently shields electromagnetic interference in the X band portion of the microwave radio region. Optical communication channels are important to the operation of many devices and are often used for remote sensing and detection.

Electronic devices are now found throughout our homes, on factory floors and in medical facilities. Electromagnetic interference shielding is often used to prevent from these devices from interfering with each other and affecting device performance.

Electromagnetic shielding, which is also used in the military to keep equipment and vehicles hidden from the enemy, can also block the optical communication channels needed for remote sensing, detection or operation of the devices. A shield that can block interference but allow for optical communication channels could help to optimize device performance in a variety of civilian and military settings.

An enzyme that defends human cells against viruses can help drive cancer evolution towards greater malignancy by causing myriad mutations in cancer cells, according to a study led by investigators at Weill Cornell Medicine. The finding suggests that the enzyme may be a potential target for future cancer treatments.

In the new study, published recently in the journal Cancer Research, scientists used a preclinical model of bladder cancer to investigate the role of the enzyme called APOBEC3G in promoting the disease and found that it significantly increased the number of mutations in tumor cells, boosting the genetic diversity of bladder tumors and hastening mortality.

“Our findings suggest that APOBEC3G is a big contributor to bladder cancer evolution and should be considered as a target for future treatment strategies,” said study senior author Dr. Bishoy M. Faltas, assistant professor of medicine in the Division of Hematology and Medical Oncology and of cell and developmental biology at Weill Cornell Medicine, and an oncologist who specializes in urothelial cancers at NewYork-Presbyterian/Weill Cornell Medical Center.

According to recent research individuals who use statins, a class of drugs that decrease cholesterol levels may have a decreased risk of an intracerebral hemorrhage. Intracerebral hemorrhage is a type of stroke caused by bleeding in the brain. The study was recently published in the journal Neurology.

“While statins have been shown to reduce the risk of stroke from blood clots, there has been conflicting research on whether statin use increases or decreases the risk of a person having a first intracerebral hemorrhage,” said study author David Gaist, MD, Ph.D., of the University of Southern Denmark in Odense and a member of the American Academy of Neurology. “For our study, we looked at the lobe and non-lobe areas of the brain to see if the location was a factor for statin use and the risk of a first intracerebral hemorrhage. We found that those who used a statin had a lower risk of this type of bleeding stroke in both areas of the brain. The risk was even lower with long-term statin use.”

The lobe area of the brain includes most of the cerebrum, including the frontal, parietal, temporal, and occipital lobes. The non-lobe area primarily includes the basal ganglia, thalamus, cerebellum, and brainstem.

A gene called BPIFB4, discovered in a population of centenarians, could help to reverse the aging of human hearts.

Carriers of healthy mutant genes, including people in so-called “blue zones” of the world, often live to 100 years or more and remain in good health. Cardiovascular complications are also rarer in these individuals. Scientists now believe that a gene may help to keep their hearts young by protecting them against diseases linked to aging.

You cannot heal as long as you carry a grudge, judgmental thoughts about things that happened in your life that you cannot forgive, or deep feelings of guilt and shame. – Dr. Henning Saupe.

Dr. Henning Saupe, founder of the Arcadia Clinic in Bad Emstal Germany, has spent the last 25 years treating cancer patients with holistic, naturopathic, and integrative therapies.

Dr. Saupe is an expert in insulin potentiation therapy, hyperthermia, botanical and low-dose chemo infusions, PEMF therapy, oxygen and ozone therapies, detox and orthomolecular medicine, meditation, yoga, and psycho-oncology.

With so much death all around us, from the pandemic to the war in Ukraine to all the mass shootings, you might wonder what it all means. Queen Elizabeth gone. Betty White gone. And perhaps even a loved one of yours gone. They no longer exist, right? They are just memories, at least from a rational scientific perspective. But what if you’re wrong?

Dr. Caroline Soames-Watkins also believed that the world around her existed as a hard, cold reality ticking away like a clock. Death was a foregone conclusion—until she learned different. Caro, the protagonist of my new novel co-written with award-winning sci-fi author Nancy Kress, also thought she had the world figured out. Not her personal world, which has been upended by controversy, but how the physical world works and how her consciousness operates within it. Broke and without a job, she accepts a job offer from her great-uncle, a Nobel Prize-winning scientist who runs a research facility studying the space between biology and consciousness—between the self and what we assume is reality. They are on the verge of a humanity-altering discovery, which throws Caro into danger—love, loss, and death—that she could never have imagined possible.

Observer takes Caro on a mind-expanding journey to the very edge of science, challenging her to think about life and the power of the imagination in startling new ways. The ideas behind Observer are based on real science, starting with the famous two-slit experiments, in which the presence of an observer affects the path taken by a sub-atomic particle, and moves step-by-step into cutting-edge science about quantum entanglement, on-going experiments applying quantum-level physics to the macro-world, the multiverse, and the nature of time and consciousness itself.

Summary: Researchers have successfully created a synthetic version of a small molecule found in a recently discovered sea sponge that appears to have therapeutic benefits for Parkinson’s disease.

Source: UCLA

Organic chemists at UCLA have created the first synthetic version of a molecule recently discovered in a sea sponge that may have therapeutic benefits for Parkinson’s disease and similar disorders. The molecule, known as lissodendoric acid A, appears to counteract other molecules that can damage DNA, RNA and proteins and even destroy whole cells.

José Cordeiro, PhD, talking about his international bestseller “The Death of Death” during the coming DLD Tel Aviv Innovation Festival in Israel. Top news at i24 news discussing about aging as the “mother” of all chronic diseases!

José Cordeiro is an international fellow of the World Academy of Art and Science, vicechair of HumanityPlus, director of The Millennium Project, founding faculty at Singularity University in NASA Research Park, Silicon Valley, and former director of the Club of Rome (Venezuela Chapter), the World Transhumanist Association and the Extropy Institute.

Has also been invited faculty at the Institute of Developing Economies IDE – JETRO in Tokyo, Japan, the Moscow Institute of Physics and Technology (MIPT) and the Higher School of Economics (HSE) in Russia.

Founder in #TransVision Madrid 2021: engineer, economist, futurist, visionary, transhumanist, singularitarian, immortalist. MIT engineer working to transcend biology and travel to Mars and beyond.

José studied engineering at the Massachusetts Institute of Technology (MIT) in Cambridge, MA, economics at Georgetown University in Washington, DC, management at INSEAD in Fontainebleau, France, and science at Universidad Simon Bolivar in Caracas, Venezuela.

He is a leading expert on technological change, future trends and economic forecasting. He has published more than 10 books in 5 languages, including his current bestseller “La muerte de la muerte” in Spanish, Portuguese, French, Russian, Chinese and Turkish.

A new technological development by Tel Aviv University has made it possible for a robot to smell using a biological sensor. The sensor sends electrical signals as a response to the presence of a nearby odor, which the robot can detect and interpret.

In this new study, the researchers successfully connected the to an electronic system and, using a machine learning algorithm, were able to identify odors with a level of sensitivity 10,000 times higher than that of a commonly used electronic device. The researchers believe that in light of the success of their research, this technology may also be used in the future to identify explosives, drugs, diseases, and more.

The biological and was led by doctoral student Neta Shvil of Tel Aviv University’s Sagol School of Neuroscience, Dr. Ben Maoz of the Fleischman Faculty of Engineering and the Sagol School of Neuroscience, and Prof. Yossi Yovel and Prof. Amir Ayali of the School of Zoology and the Sagol School of Neuroscience. The results of the study were published in Biosensors and Bioelectronics.

The orbitofrontal cortex (OFC) is a region in the frontal lobe of the brain known to be involved in decision-making and information processing. The lateral part of this brain region, known as the lOFC, has been identified as a particularly salient region for the creation of so-called “cognitive maps.”

Cognitive maps are mental representations of the world that are believed to guide . While past studies have linked the lOFC to the brain’s use of these maps, it is still unclear whether it creates these maps or merely deploys them when necessary.

Researchers at the National Institute on Drug Abuse in Baltimore and the Max Planck Institute for Biological Cybernetics have recently carried out a study exploring these two hypotheses, with the hope of better understanding the functions of the lOFC. Their findings, published in Nature Neuroscience, suggest that the lateral OFC is directly involved in the writing of cognitive maps.