Toggle light / dark theme

Two groundbreaking studies recently published in the journals Nature and Genome Medicine found genetic signatures that explain ethnic disparities in the severity of prostate cancer, notably in Sub-Saharan Africa.

By genetically analyzing prostate cancer tumors from Australian, Brazilian, and South African donors, the team developed a new prostate cancer taxonomy (classification scheme) and cancer drivers that not only distinguish patients based on their genetic ancestry but also predict which cancers are likely to become life-threatening, a task that is currently difficult.

“Our understanding of prostate cancer has been severely limited by a research focus on Western populations,” said senior author Professor Vanessa Hayes, genomicist and Petre Chair of Prostate Cancer Research at the University of Sydney’s Charles Perkins Centre and Faculty of Medicine and Health in Australia. “Being of African descent, or from Africa, more than doubles a man’s risk for lethal prostate cancer. While genomics holds a critical key to unraveling contributing genetic and non-genetic factors, data for Africa has till now, been lacking.”

The devastating loss of a pair of newborns has provided critical insights into a rare set of blood types spotted for the first time in humans 40 years ago.

By unravelling the molecular identity of the relatively new blood type known as the Er system, a new study could hopefully prevent such tragedies in the future.

“This work demonstrates that even after all the research conducted to date, the simple red blood cell can still surprise us,” says University of Bristol cell biologist Ash Toye.

Summary: A newly discovered second stem cell population in the mouse brain is responsible for the production of new neurons in the olfactory bulb of adult mice.

Source: Heidelburg University.

In the brain of adult mammals, neural stem cells ensure that new nerve cells, i.e. neurons, are constantly formed. This process, known as adult neurogenesis, helps mice maintain their sense of smell.

Summary: Boosting omega-3 fatty acid intake helps to preserve brain health and improve cognition in middle age, a new study reports. For those with the Alzheimer’s associated APOE4 gene, omega-3 fatty acid intake was associated with greater hippocampal volume and less small vessel disease.

Source: UT San Antonio.

Eating cold-water fish and other sources of omega-3 fatty acids may preserve brain health and enhance cognition in middle age, new evidence indicates.

A multidisciplinary team from two Johns Hopkins University institutions, including neurotoxicologists and virologists from the Bloomberg School of Public Health and infectious disease specialists from the school of medicine, has found that organoids (tiny tissue cultures made from human cells that simulate whole organs) known as “mini-brains” can be infected by the SARS-CoV-2 virus that causes COVID-19.

The results, which suggest that the virus can infect human cells, were published online June 26, 2020, in the journal ALTEX: Alternatives to Animal Experimentation.

Early reports from Wuhan, China, the origin of the COVID-19 pandemic, have suggested that 36% of patients with the disease show , but it has been unclear whether or not the virus infects human brain cells. In their study, the Johns Hopkins researchers demonstrated that certain human neurons express a receptor, ACE2, which is the same one that the SARS-CoV-2 virus uses to enter the lungs. Therefore, they surmised, ACE2 also might provide access to the brain.

This could help us understand diseases better.

Researchers at the University of Utah have developed seed-sized brain organoids that can not only organize themselves but also provide us insights into the causes of autism, a press release said.

Organoids, tiny clusters of tissue derived from stem cells, allow researchers to replicate the complex organs outside the body while also controlling conditions around them… More.


Yueqi Wang.

Discarded electronic devices, such as cell phones, are a fast-growing source of waste. One way to mitigate the problem could be to use components that are made with renewable resources and that are easy to dispose of responsibly. Now, researchers reporting in ACS Applied Materials & Interfaces have created a prototype circuit board that is made of a sheet paper with fully integrated electrical components, and that can be burned or left to degrade.

Most small electronic devices contain that are made from glass fibers, resins and metal wiring. These boards are not easy to recycle and are relatively bulky, making them undesirable for use in point-of-care , environmental monitors or personal wearable devices.

One alternative is to use paper-based circuit boards, which should be easier to dispose of, less expensive and more flexible. However, current options require specialized paper, or they simply have traditional metal circuitry components mounted onto a sheet of paper. Instead, Choi and colleagues wanted to develop circuitry that would be simple to manufacture and that had all the electronic components fully integrated into the sheet.

In a recent study published in the eLife journal, researchers demonstrated that tumor cells evade immunotherapy by generating unique transient cell-in-cell structures, resistant to chemotherapy and destruction by T cells.

Despite some remarkable success stories, cancer immunotherapies that use the body’s immune system to combat cancer stops working in many patients. It is unclear why this occurs, but how the immune system attacks cancer cells might have a role to play in this phenomenon.

Immunotherapies activate specialized killer T-cells, which trigger the immune response to tumors. These cells can identify cancer cells and inject toxic granules through their membranes to kill them. However, killer T-cells are not always effective because cancer cells are inherently good at avoiding detection. During treatment, their genes tend to mutate, giving them novel ways to evade the human immune system.

This video is the 1st of a series of “What is Aging” webinars that aims to unravel what aging is, how we age, why we age, and how to reverse it.

We welcome Jason C. Mercurio, MFE, Dr. Jose Cordeiro, and Dr. Ian Hale to discuss the topic.

Thanks to our transhumanist influencers including:
@G. Stolyarov II @Ray Kurzweil 2017 @The Singularity is Near.
#ageless #agelesspartners #agereveal #longevity #biohacking #biotechnology #agingbackwards.

Book a coaching session with an Ageless Coach today: