Toggle light / dark theme

Science Saturday: Mayo Clinic scientists cracking the genetic code of disease-causing bacterial species to improve patient outcomes

Mayo Clinic scientists are building an expansive library of DNA blueprints of disease-causing bacterial species. The unique collection of genomic sequences is serving as a reference database to help doctors provide rapid and precise diagnoses and pinpoint targeted treatments to potentially improve patient outcomes.

The vast data set is also being studied by researchers in an effort to develop new individualized treatments to combat bacteria-related diseases.

Bacterial infections were linked to more than 7 million global deaths in 2019. Of those, nearly 1.3 million were the direct result of drug-resistant bacteria, according to the National Institutes of Health.

Quantum leap: How quantum sensors are revolutionizing robotics

Head over to our on-demand library to view sessions from VB Transform 2023. Register Here

The recent Ant-Man movie did a great job of putting quantum up in lights, but the future of quantum science shines even brighter than fiction. One application, quantum sensors, is already the basis of some of the most important systems and technologies in our world — global positioning systems (GPS) and magnetic resonance imaging (MRI) scanners are prime examples.

Quantum sensors and quantum AI are just the beginning: Robots are now getting the quantum sensor treatment too. Quantum sensors will supercharge the way robots work and how we apply them to important 21st-century challenges.

WHO expert cancer group states that the sweetener aspartame is a possible carcinogen, but evidence is limited — 6 questions answered

Assessments of the health impacts of the non-sugar sweetener aspartame are released today by the International Agency for Research on Cancer (IARC) and the World Health Organization (WHO) and the Food and Agriculture Organization (FAO) Joint Expert Committee on Food Additives (JECFA). Citing “limited evidence” for carcinogenicity in humans, IARC classified aspartame as possibly carcinogenic to humans (IARC Group 2B) and JECFA reaffirmed the acceptable daily intake of 40 mg/kg body weight. Aspartame is an artificial (chemical) sweetener widely used in various food and beverage products since the 1980s, including diet drinks, chewing gum, gelatin, ice cream, dairy products such as yogurt, breakfast cereal, toothpaste and medications such as cough drops and chewable vitamins.

https://www.who.int/news/item/14-07-2023-aspartame-h…s-released


An expert panel found a potential association with liver cancer, but too little research exists to assume a causal connection. For now, the WHO left current consumption guidelines unchanged.

How Bacteriophages can Boost Microbial Evolution

Bacterial cells can easily share genes with one another, and have a few ways to do so. Viruses called bacteriophages infect bacterial cells, and they can also transfer genes between bacterial cells in a process known as transduction. Often, the genes that are being shared confer resistance to a drug, and once a bacterial cell gains the ability, antibiotic resistance can easily spread through populations of microbial cells. Now scientists have discovered another mechanism that bacteria use to share genes, and it can help microbes evolve even faster than we knew. The findings have been reported in Cell.

There are three types of transduction that we now know about: generalized, specialized, and lateral. The newly revealed mechanism is called lateral cotransduction. It is about as rapid as lateral transduction, which itself is far faster than generalized transduction. However, the study indicated that lateral cotransduction is more complex and versatile than the other modes of transduction. Lateral transduction happens when phages that have integrated into bacterial genomes are reactivated, and trigger reproduction in the lytic cycle; but lateral cotransduction can while new bacterial cells are being infected, and during the reactivation process.

Dopamine Neurons More Diverse than Previously Thought

Dopamine is a type of neurotransmitter that can provide an intense feeling of reward. It has been a long-standing assumption that most, if not all, dopamine neurons solely respond to rewards or reward-predicting cues. However, a study in mice led by researchers at Northwestern University reveals dopamine may also control movements. The researchers uncovered that one genetic subtype fires when the body moves and that these neurons do not respond to rewards at all.

The findings are published in Nature Neuroscience in an article titled, “Unique functional responses differentially map onto genetic subtypes of dopamine neurons,” and shed new light on the brain which may lead to new research on Parkinson’s disease, which is characterized by the loss of dopamine neurons yet affects the motor system.

“Dopamine neurons are characterized by their response to unexpected rewards, but they also fire during movement and aversive stimuli,” the researchers wrote. “Dopamine neuron diversity has been observed based on molecular expression profiles; however, whether different functions map onto such genetic subtypes remains unclear. In this study, we established that three genetic dopamine subtypes within the substantia nigra pars compacta, characterized by the expression of Slc17a6 (Vglut2), Calb1, and Anxa1, each have a unique set of responses to rewards, aversive stimuli, and accelerations and decelerations, and these signaling patterns are highly correlated between somas and axons within subtypes.”

Police use drone to find missing person with dementia

The device was equipped with infrared technology.

A police drone equipped with infrared capabilities has risen as a hero in the search for a missing person with dementia that disappeared from a Delta hospital on July 29. Delta is a city located in British Columbia, Canada.

This is according to a report by Global News published on Wednesday.


Interesting Engineering is a cutting edge, leading community designed for all lovers of engineering, technology and science.

Powerful gene editing approach boosts rotifers in pantheon of laboratory animals

Rotifers are excellent research organisms for studying the biology of aging, DNA repair mechanisms, and other fundamental questions. Now, using an innovative application of CRISPrCas9, scientists at the Marine Biological Laboratory, Woods Hole, have devised a method for making precise, heritable changes to the rotifer genome, enabling the larger community of scientists to deploy the rotifer as a genetically tractable lab organism.

/* */