Toggle light / dark theme

Listen to new episodes of the Closer To Truth on the go wherever you get your podcasts: https://shorturl.at/hwGP3

If consciousness is 100% physical, we would have to conclude that the same kind of consciousness that we experience as humans can be generated by non-biological entities (eventually). Conversely, if non-biological consciousness would somehow, someday, prove impossible, then consciousness would have to embed some nonphysical aspect. But how would we ever know?

Register for a free account to get exclusive subscriber benefits like early access to new episodes: https://bit.ly/3He94Ns.

Andy Clark is a British philosopher who is Professor of Cognitive Philosophy at the University of Sussex.

Watch more videos on consciousness as all physical: https://shorturl.at/cgMP2

Closer To Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid “engineered living materials” are made by embedding cells in an inanimate matrix that’s formed in a desired shape. Now, researchers report in ACS Central Science that they have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.

Summary: Researchers leveraged deep reinforcement learning (DRL) to enable a robot to adaptively switch gaits, mimicking animal movements like trotting and pronking, to traverse complex terrains effectively. Their study explores the concept of viability—or fall prevention—as a primary motivator for such gait transitions, challenging previous beliefs that energy efficiency is the key driver.

This novel approach not only enhances the robot’s ability to handle challenging terrains but also provides deeper insights into animal locomotion. The team’s findings suggest that prioritizing fall prevention may lead to more agile and efficient robotic and biological movement across uneven surfaces.

Now Princeton researchers have sparked new life into static. Using millions of hours of computational time to run detailed simulations, the researchers found a way to describe static charge atom-by-atom with the mathematics of heat and work. Their paper appeared in Nature Communications on March 23.

The study looked specifically at how charge moves between materials that do not allow the free flow of electrons, called insulating materials, such as vinyl and acrylic. The researchers said there is no established view on what mechanisms drive these jolts, despite the ubiquity of static: the crackle and pop of clothes pulled from a dryer, packing peanuts that cling to a box.

“We know it’s not electrons,” said Mike Webb, assistant professor of chemical and biological engineering, who led the study. “What is it?”

Here’s my new Opinion article for Newsweek on brainwave technology and AI. Check it out!


Historically, our greatest strength is our biological form, tested and evolved over millions of years. Instead of spending resources searching for ways to connect technology directly to our minds, we could find ways to use technology to protect our biological thoughts and proclivity. That might mean faraday cages around our brains that no super intelligent AIs signals could crack—as well as encryption where our code perpetually changes randomly.

Another way to protect against AI is for humans to become like bugs—a concept recently explored in the Netflix series 3 Body Problem. Companies are already working on trying to scan the brain—down to its atoms—in real time. Eventually, the hope is we’ll be able to upload our consciousnesses into computers. There’s open debate whether an upload is the real you. But for purposes of protecting ourselves against AI, another important question is how many uploads of you would there be? If AI was inundated with trillions upon trillions of uploaded human minds, it’s possible, like bugs, AI would never win a battle to get rid all of us, even if it wanted to. There would simply be too many of us in the cloud, even if there was just one of us in the flesh.

Another way to outsmart AI might be to utilize brainwave technology so that human minds are interconnected. Some scientists call this the hive mind, and it could be possible in the future to obtain millions of minds in sync without the use of AI. AI might be able to corrupt the method of human hive mind communication, but it’s still another way we could attempt to remain as intelligent as AI. After all, if you could harness a billion minds together, who knows how smart we could be?

It is unclear if any of these options are going to outsmart AI in the 100-year-future. But a mindset change in the age of AI is needed for brainwave tech. And that is not one of rushing to develop the latest tech out there, but rushing to innovate ways that brainwave tech can protect ourselves from AI.

For the first time, researchers have simulated neurological junctions called synapses using the same water and salt ingredients the brain uses, contributing to an emerging field that combines biology with electronics called iontronics.

The team from Utrecht University in the Netherlands and Sogang University in South Korea claim to have been inspired by the functioning of the human brain, which also uses charged particles called ions dissolved in water to transmit signals within neurons.

An important feature of the brain’s ability to process information is synaptic plasticity, which allows neurons to adjust the strength of connections between them in response to input history.

Peptides can form on cosmic dust despite water presence, challenging previous beliefs and suggesting a possible extraterrestrial origin for life’s building blocks.

Peptides are organic compounds that play a crucial role in many biological processes, for example, as enzymes. A research team led by Dr. Serge Krasnokutski from the Astrophysics Laboratory at the Max Planck Institute for Astronomy at the University of Jena had already demonstrated that simple peptides can form on cosmic dust particles. However, it was previously assumed that this would not be possible if molecular ice, which covers the dust particle, contains water – which is usually the case.

Now, the team, in collaboration with the University of Poitiers, France, has discovered that the presence of water molecules is not a major obstacle for the formation of peptides on such dust particles. The researchers report on their findings in the journal Science Advances.

Humanity will change. Or be replaced. Or go extinct. An exploration of the many potential posthuman offspring of humankind, from the biological to the artificial.

C. M. Kosemen YouTube: / cmkosemen.
C. M. Kosemen Patreon: / cmkosemen.
C. M. Kosemen Website: http://www.cmkosemen.com/

What do you imagine when I say the future of human evolution?

A superbeing with powers beyond comprehension? A mutated oddity far removed from our idea of humanity? Or perhaps nothing but decaying remains left in the wake of our extinction?

Scientists and sci-fi authors have long speculated on what our future selves will look like — and as technology advances, our species might evolve much faster than natural selection would typically allow. So, for this entry into the archive, we’ll explore posthuman scenarios from the absurd to the frighteningly plausible — and meet the many possible successors to humankind…

0:00 Future of Human Evolution.
0:43 Man After Graham.
4:23 The Atomic Mutant.
7:41 The Extinction Alternative.
10:23 A Planet of Apes.
13:38 Rise of the Superhuman.
16:18 Technological Ascension.
19:02 Who We Choose to Be.

Copyright Disclaimer: Under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education, and research. All video/image content is edited under fair use rights for reasons of commentary.