Menu

Blog

Archive for the ‘biological’ category: Page 204

Nov 5, 2016

Researchers develop a system for adaptive live imaging of large living organisms

Posted by in categories: biological, genetics, robotics/AI

Light-sheet microscopy is one of the most powerful method for imaging the development and function of whole living organisms. However, achieving high-resolution images with these microscopes requires manual adjustments during imaging. Researchers of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden together with colleagues at Janelia Research Campus (HHMI) have developed a new kind of light-sheet microscope that can ‘drive’ itself automatically by adapting to the challenging and dynamic optical conditions of large living specimens. This new smart microscope combines a novel hardware design and a smart ‘AutoPilot’ system that can analyze images and automatically adjust and optimize the microscope. This framework enables for the first time long-term adaptive imaging of entire developing embryos and improves the resolution of light-sheet microscopes up to five-fold.

Light sheet microscopy is a novel microscopy technique developed in the last ten years that is uniquely suited to image large . In a light-sheet microscope, a laser light sheet illuminates the sample perpendicularly to the observation along a thin plane within the sample. Out-of-focus and scattered light from other planes—which often impair image quality—is largely avoided because only the observed plane is illuminated.

The long-standing goal of microscopy is to achieve ever-sharper images deep inside of living samples. For light-sheet microscopes this requires to perfectly maintain the careful alignments between imaging and light-sheet illumination planes. Mismatches between these planes arise from the optical variability of living tissues across different locations and over time. Tackling this challenge is essential to acquire the necessary to decipher the biology behind organism development and morphogenesis. “So far, researchers had to sit at their microscope and tweak things manually—our system puts an end to this: it is like a self-driving car: it functions autonomously”, says Loïc Royer, first author of the study. This smart autonomous microscope can in real-time analyze and optimize the spatial relationship between light-sheets and detection planes across the specimen volume.

Read more

Oct 29, 2016

How Smart Beta ETFs of the Future Will Use AI

Posted by in categories: bioengineering, biological, computing, economics, finance, information science, quantum physics, robotics/AI

Anyone who does not have QC as part of their 5+Yr Roadmap for IT are truly exposing their company as well as shareholders and customers. China, Russia, Cartels, DarkNet, etc. will use the technology to extort victims, destroy companies, economies, and complete countries where folks have not planned, budget, skilled up, and prep for full replacement of their infrastructure and Net access. Not to mention companies who have this infrastructure will provide better services/ CCE to svc. consumers.


In a recent article, we highlighted a smart beta ETF called the “Sprott BUZZ Social Media Insights ETF” that uses artificial intelligence (AI) to select and weight stocks. If we stop and think about that for a moment, that’s a pretty cool use of AI that seems well ahead of its time. Now we’re not saying that you should go out and buy this smart beta ETF right away. It uses social media data. We know that on social media, everyone’s an expert and many of the opinions that are stated are just that, opinions. However some of the signals may be legitimate. Someone who just bought Apple is likely to go on telling everyone how bullish they are on Apple shares. Bullish behavior is often accompanied by bullish rhetoric. And maybe that’s exactly the point, but the extent to which we’re actually using artificial intelligence here is not that meaningful. Simple scripting tools go out and scrape all this public data and then we use natural language processing (NLP) algorithms to determine if the data artifacts have a positive or negative sentiment. That’s not that intelligent, is it? This made us start to think about what it would take to create a truly “intelligent” smart beta ETF.

What is Smart Beta?

Continue reading “How Smart Beta ETFs of the Future Will Use AI” »

Oct 28, 2016

PLOS Synthetic Biology Community

Posted by in categories: bioengineering, biological

The field, or at least the widely used term, of synthetic biology (synbio) started nearly two decades ago. As the field has matured, two PLoS ONE papers have analyzed the publishing data to look at trends, language, and connections among synbio researchers. This data provides snapshots of who’s publishing, what kind of research is being published, when it’s being published, and where it’s being published. The question of why is certainly open for interpretation but the growth dynamics of synthetic biology publishing can give some sense of why a the term has stuck as a useful unifying term.

In 2012, researchers used Thomson Reuters Web of Science publishing data to map where people are publishing synbio research, how those people are connected, and who’s funding it. More recently, three French researchers also used data from the Thomson Reuters Web of Science to assess how synthetic biology the different areas of synthetic biology have grown and interacted.

Both of these papers draw interesting pictures of how new terms and ideas spread within an new umbrella term for a kind of research. Together these two papers paint give us some answers to the ‘Who, What, When, Where, & Why’ of synthetic biology.

Read more

Oct 25, 2016

As In The Days Of Noah—New Synthetic Biology Factory Will Design, Build, And Test Exotic New Lifeforms

Posted by in categories: bioengineering, biological, genetics, robotics/AI

Why compliance exist.


Gingko Bioworks launched their new laboratory last month—an automated “factory” that mass-produces genetically modified organisms. The organism company’s tagline is “Biology By Design,” and it aims to deliver just that in their second foundry, which is equipped with numerous robots that mash together huge batches of genes to churn out new and exotic lifeforms […] Gingko is ambitiously working through the complexities of biology and genetics to create these experimental organisms. The company boasts of a design-build-test cycle: gene-enzyme mixes designed from the company’s scientific database is put together in a hundred different ways, and the “mashup” that services a client’s needs best is accepted as the new organism’s genetic profile. Their new liquid-handling robots like the Echo 525 make large-scale experimentation possible. (READ MORE)

FREE GIANT 5-VOL RESEARCHERS LIBRARY WITH THE 2016 PROPHECY DVDS COLLECTION!

Continue reading “As In The Days Of Noah—New Synthetic Biology Factory Will Design, Build, And Test Exotic New Lifeforms” »

Oct 25, 2016

10 companies that want to make chemotherapy easier for patients — Bioquark Inc.

Posted by in categories: aging, bioengineering, biological, biotech/medical, disruptive technology, DNA, genetics, health, life extension, science
Bioquark Inc. (www.bioquark.com) mention on CNBC — the best way to make chemo easier is to eliminate the need for it forever!

Continue reading “10 companies that want to make chemotherapy easier for patients — Bioquark Inc.” »

Oct 25, 2016

Metal-Munching Microbes Could Manufacture Machines On Mars

Posted by in categories: biological, engineering, space

NASA is funding the development of engineered bugs that eat and excrete metal.

Read more

Oct 23, 2016

New Synthetic Biology Factory Will Design, Build, and Test Custom Organisms

Posted by in categories: bioengineering, biological

In Brief:

  • A company is combining innovative concepts of engineering and biology to manufacture unique organisms for a wide variety of applications.
  • Aside from being exciting science, these organisms can also make a difference to a company’s bottom line.

Read more

Oct 20, 2016

How on Earth will we colonize Mars? Use Synthetic Biology!

Posted by in categories: bioengineering, biological, information science, space

https://youtube.com/watch?v=v-qVBko0r0U

Mars colonization — getting there is only a small part of the equation. The bigger problem is how to survive. Synthetic biology may be able to help.

Read more

Oct 20, 2016

Senescent cell death brings hopes to life

Posted by in category: biological

Yossi Ovadya Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel & Valery Krizhanovsky Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel Correspondence [email protected]

Read more

Oct 18, 2016

Affordable EEG biosensors to control physical things

Posted by in categories: biological, computing

It seems that biofeedback is a thing of future. By having brain activity feedback, you can train meditation, attention, improve sleep, control gadgets, artificial limbs, carts for impaired, and even computer I/O. Everything starts with proper biosensor and controller. Biological signals are very low voltage – microvolts. In order to distinguish them from noisy environment, a precision electronics is required. Brain activity signals are somewhat different from myograms or ECG, they can be analyzed as power spectrum that represent brain activity phases like Alpha, Beta, Theta. There has be a numerous modules developed to acquire brain signals. If you want low to develop sensors by yourself, you could grab a Neurosky platform which is a small size PCB with sensor and microcontroller interfaces.

neurosky

With it you can read raw EEG signals with sampling 512Hz and do with them what you want. USART interface enables you to connect it yo Arduino or Raspberry Pi where you can calculate all sort of things and extract control signals. Of course you can read processed power spectrum as well to detect activities like attention, meditation and other activities. Eye blink detection is also an option. Great thing is that you can use this module to read ECG activity as well. Module incorporates AC noise filter which can be configured for 50HZ or 60Hz.

Continue reading “Affordable EEG biosensors to control physical things” »