Toggle light / dark theme

Circa 2010


Researchers have discovered a possible new species of bacteria that survives by producing and ‘breathing’ its own oxygen. The finding suggests that some microbes could have thrived without oxygen-producing plants on the early Earth — and on other planets — by using their own oxygen to garner energy from methane (CH4).

“The mechanism we have now discovered shows that, long ago, these organisms could have exploited the methane sources on Earth and possibly on other planets and moons by mechanisms that we didn’t know existed,” says Mike Jetten, a microbiologist at Radboud University Nijmegen in the Netherlands and part of the team that conducted the study, which is published in Nature today1.

The oxygen-producing bacterium, provisionally named Methylomirabilis oxyfera, grows in a layer of methane-rich but oxygen-poor mud at the bottom of rivers and lakes. The microbes live on a diet of methane and nitrogen oxides, such as nitrite and nitrate. These nitrogen-containing compounds are especially abundant in sediment contaminated by agricultural runoff.

A new topic a new challenge for future civilizations.

I won’t write an introduction I will ask couple of questions to make you think about it.

In the forth industrial revolution are we going to change the way we reproduce? Could be the first step for post-human era in 2040?

How can we change the way we deal with economics? Because economy depends on population grow. In a way or another world population will stop at 11 billion so it is necessary to change the economy.

How can we colonize and expand while fertility rate is going down could another creatures like machines and biological engineered animals help us to expand and the human specie will limit its population?


The scale-free complexity associated with the biological system in general, and the neuron in particular, means that within each cell there is a veritable macromolecular brain, at least in terms of structural complexity, and perhaps to a certain degree functional complexity as well—a fractal hierarchy. This means that the extremely simplistic view of the synapse as a single digital bit is misrepresenting the reality of the situation—such as, if we were to utilize the parlance of the neurocomputational model, each ‘computational unit’ contains a veritable macromolecular brain within it. There is no computer or human technology yet equivalent to this.\.


A study published in the journal Science has upended 80 years of conventional wisdom in computational neuroscience that has modeled the neuron as a simple point-like node in a system, integrating signals and passing them along.

Using an advanced microscopy technique, Texas A&M researchers have uncovered a twin boundary defect in a soft polymer that has never been observed before.

Texas A&M University scientists have for the first time revealed a single microscopic defect called a “twin” in a soft-block copolymer using an advanced electron microscopy technique. This defect may be exploited in the future to create materials with novel acoustic and photonic properties.

“This defect is like a black swan — something special going on that isn’t typical,” said Edwin Thomas, professor in the Department of Materials Science and Engineering. “Although we chose a certain polymer for our study, I think the twin defect will be fairly universal across a bunch of similar soft matter systems, like oils, surfactants, biological materials, and natural polymers. Therefore, our findings will be valuable to diverse research across the soft matter field.”

Archaea are more than just oddball lifeforms that thrive in unusual places — they turn out to be quite widespread. Moreover, they might hold the key to understanding how complex life evolved on Earth. Many scientists suspect that an ancient archaeon gave rise to the group of organisms known as eukaryotes, which include amoebae, mushrooms, plants and people — although it’s also possible that both eukaryotes and archaea arose from some more distant common ancestor.


As scientists learn more about enigmatic archaea, they’re finding clues about the evolution of the complex cells that make up people, plants and more.

In nature, scents emitted by plants attract animals such as insects. However, scents are also used in the industry, for example in the production of perfumes and aromas. In order to achieve a reliable, quick, and objective discrimination of mint scents in particular, researchers at KIT (Karlsruhe Institute of Technology) embarked on an interdisciplinary collaboration and developed an electronic nose with an artificial sense of smell. This E-nose achieves high precision in recognizing different mint species, which makes it a suitable tool for applications ranging from pharmaceutical quality control to the monitoring of mint oil as an environmentally friendly bioherbicide.

“So far, scientists were able to identify an estimated 100000 different biological compounds through which neighboring plants interact with each other or control other organisms, such as insects,” says Professor Peter Nick from the Botanical Institute of KIT. “These compounds are very similar in plants of the same genus.” A classic example from the plant world is mint, where the different varieties produce with very species-specific scents. Industrial quality control of mint oil, in particular, is subject to strict legal regulations in order to prevent adulteration, is time-consuming, and requires a great deal of expertise, the scientist explains. A new “electronic nose” equipped with sensors made from combined materials will support this process.

In new research, Texas A&M University scientists have for the first time revealed a single microscopic defect called a “twin” in a soft-block copolymer using an advanced electron microscopy technique. This defect may be exploited in the future to create materials with novel acoustic and photonic properties.

“This defect is like a black swan—something special going on that isn’t typical,” said Dr. Edwin Thomas, professor in the Department of Materials Science and Engineering. “Although we chose a certain polymer for our study, I think the twin defect will be fairly universal across a bunch of similar soft matter systems, like oils, surfactants, and natural polymers. Therefore, our findings will be valuable to diverse research across the soft matter field.”

The results of the study are detailed in the Proceedings of the National Academy of Sciences (PNAS).

Dr. Thomas Lovejoy, is an innovative conservation biologist, who is Founder and President of the non-profit Amazon Biodiversity Center, the renowned Biological Dynamics of Forest Fragments Project, and the person who coined the term “biological diversity”.

Dr. Lovejoy currently serves as Professor in the department of Environmental Science and Policy at George Mason University, and as a senior fellow at the United Nations Foundation based in Washington, DC.

Dr. Lovejoy has also served as the World Bank’s chief biodiversity advisor and the lead specialist for environment for Latin America and the Caribbean, the first Biodiversity Chair of the H. John Heinz III Center for Science, Economics and the Environment, President of the Heinz Center, and chair of the Scientific Technical Advisory Panel (STAP) for the Global Environment Facility (GEF), the multibillion-dollar funding mechanism for developing countries in support of their obligations under international environmental conventions.

Spanning the political spectrum, Dr. Lovejoy has served on science and environmental councils under the Reagan, Bush, and Clinton administrations. At the core of these many influential positions are seminal ideas, which have formed and strengthened the field of conservation biology.

In the 1980s, Dr. Lovejoy brought international attention to the world’s tropical rainforests, and in particular, the Brazilian Amazon, where he has worked since 1965.

With multiple co-edited books (including Biodiversity and Climate Change: Transforming the Biosphere; Drones for Conservation — Field Guide for Photographers, Researchers, Conservationists and Archaeologists; Costa Rican Ecosystems; Climate Change and Biodiversity; On the Edge: The State and Fate of the World’s Tropical Rainforests), Dr. Lovejoy is credited as a founder of the field of climate change biology. He also founded the series Nature, the popular long-term series on public television.