An artificial intelligence program may enable the first simple production of customizable proteins called zinc fingers to treat diseases by turning genes on and off.
The researchers at NYU Grossman School of Medicine and the University of Toronto who designed the tool say it promises to accelerate the development of gene therapies on a large scale.
Illnesses including cystic fibrosis, Tay-Sachs disease, and sickle cell anemia are caused by errors in the order of DNA letters that encode the operating instructions for every human cell. Scientists can in some cases correct these mistakes with gene editing methods that rearrange these letters.
Of the respondents, 28 percent said they were more likely than not to use gene editing to make their babies smarter, and 38 percent said they’d use polygenic screening. The researchers also noted what they called a bandwagon effect, where people who were told something along the lines of “everyone else is doing it” were more likely to say they’d do it too. This is logical; our comfort with decisions is buoyed by a sense that others in our shoes would choose similarly.
It’s important to note, though, that the survey made it clear that genetically enhancing embryos didn’t come with a guaranteed result of a smarter kid. “In this study, we stipulated a realistic effect—that each service would increase the odds of having a child who attends a top-100 college by 2 percentage points, from 3 percent to 5 percent odds—and lots of people are still interested,” said Michelle N. Meyer, chair of the Department of Bioethics and Decision Sciences at Geisinger and first author of the article.
The numbers—28 and 38 percent—don’t seem high. That’s a little below and a little above one-third of total respondents who would use the technologies. But imagine walking around in a world where one out of every three people had had their genes tweaked before birth. Unsettling, no? The researchers said their results point to substantial and growing interest in genetic technologies for offspring enhancement, and that now is the time to get a national conversation going around regulations.
Science fiction has become a reality with recent developments toward biohacking through nanotechnology. Soon, science and industries may soon realize the potential of human hacking… but at what risk versus reward? Medical nanotechnology is one of these such topics. Many experts believe nanotechnology will pave the way for a bright, new future in improving our wellbeing. Yet, at the core of this biohacking are machines and as we’ve seen with other technologies — there are very real risks of malicious intent. In this video, we share some of the applications being developed combining nanotechnology and medicine. We also look at the potential risks found in the practice and how we may mitigate issues before they’re problematic. We also share how companies can reduce security flaws and curb public perception so the nanotechnology industry can flourish without major setbacks. Want to learn more about this budding area of science and medicine?
See our accompanying blog post for the details and be sure to dig around the site, here:
Is Director of the Division of Research, Innovation and Ventures (DRIVe — https://drive.hhs.gov/) at the Biomedical Advanced Research and Development Authority (https://aspr.hhs.gov/AboutASPR/ProgramOffices/BARDA/Pages/default.aspx), a U.S. Department of Health and Human Services (HHS) office responsible for the procurement and development of medical countermeasures, principally against bioterrorism, including chemical, biological, radiological and nuclear (CBRN) threats, as well as pandemic influenza and emerging diseases.
Dr. Patel is committed to advancing high-impact science, building new products, and launching collaborative programs and initiatives with public and private organizations to advance human health and wellness. As the DRIVe Director, Dr. Patel leads a dynamic team built to tackle complex national health security threats by rapidly developing and deploying innovative technologies and approaches that draw from a broad range of disciplines.
Dr. Patel brings extensive experience in public-private partnerships to DRIVe. Prior to joining the DRIVe team, he served as the HHS Open Innovation Manager. In that role, he focused on advancing innovative policy and funding solutions to complex, long-standing problems in healthcare. During his tenure, he successfully built KidneyX, a public-private partnership to spur development of an artificial kidney, helped design and execute the Advancing American Kidney Health Initiative, designed to catalyze innovation, double the number of organs available for transplant, and shift the paradigm of kidney care to be patient-centric and preventative, and included a Presidential Executive Order signed in July 2019. He also created the largest public-facing open innovation program in the U.S. government with more than 190 competitions and $45 million in awards since 2011.
Prior to his tenure at HHS, Dr. Patel co-founded Omusono Labs, a 3D printing and prototyping services company based in Kampala, Uganda; served as a scientific analyst with Discovery Logic, (a Thomson Reuters company) a provider of systems, data, and analytics for real-time portfolio management; and was a Mirzayan Science and Technology Policy Fellow at The National Academies of Science, Engineering, and Medicine. He also served as a scientist at a nanotechnology startup, Kava Technology.
Dr. Renee Wegrzyn, Ph.D. is the inaugural director of the Advanced Research Projects Agency for Health (ARPA-H — https://arpa-h.gov/), an agency that supports the development of high-impact research to drive biomedical and health breakthroughs to deliver transformative, sustainable, and equitable health solutions for everyone. ARPA-H’s mission focuses on leveraging research advances for real world impact.
Previously, Dr. Wegrzyn served as a vice president of business development at Ginkgo Bioworks and head of Innovation at Concentric by Ginkgo, where she focused on applying synthetic biology to outpace infectious diseases—including Covid-19—through biomanufacturing, vaccine innovation and biosurveillance of pathogens at scale.
Prior to Ginkgo, Dr. Wegrzyn was program manager in the Biological Technologies Office at DARPA, where she leveraged the tools of synthetic biology and gene editing to enhance biosecurity, promote public health and support the domestic bioeconomy. Her DARPA portfolio included the Living Foundries: 1,000 Molecules, Safe Genes, Preemptive Expression of Protective Alleles and Response Elements and the Detect it with Gene Editing Technologies programs.
Dr. Wegrzyn received the Superior Public Service Medal for her work and contributions at DARPA. Prior to joining DARPA, she led technical teams in private industry in the areas of biosecurity, gene therapies, emerging infectious disease, neuromodulation, synthetic biology, as well as research and development teams commercializing multiplex immunoassays and peptide-based disease diagnostics.
Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.
Michael Levin, Tufts Center for Regenerative and Developmental Biology. Bioelectric Networks: Taming the Collective Intelligence of Cells for Regenerative Medicine.
Michael Levin, Distinguished Professor in the Biology department and Vannevar Bush Chair, serves as director of the Tufts Center for Regenerative and Developmental Biology. Recent honors include the Scientist of Vision award and the Distinguished Scholar Award. His group’s focus is on understanding the biophysical mechanisms that implement decision-making during complex pattern regulation, and harnessing endogenous bioelectric dynamics toward rational control of growth and form. The lab’s current main directions are:
Just when we are getting accustomed to artificial intelligence in our daily lives, get ready for a new disruptor: synthetic biology, or syn-bio, the design and engineering of biological systems to create and improve processes and products. It promises to become a manufacturing paradigm of the future.
Recent advances in molecular, cell, and systems biology have enabled scientists to shift their focus from research of syn-bio to design and engineering, creating some truly mind blowing applications. By using microorganisms, for example, companies can now manufacture an infinite number of things, cell by cell, from scratch. This offers new ways of producing almost everything that humans consume, from flavors and fabrics to foods and fuels.
By the end of the decade, syn-bio may be used extensively in manufacturing industries that account for more than a third of global output, according to BCG Henderson Institute, Boston Consulting Group’s strategy think tank. Various sources estimate that the syn-bio market today is about $10 billion and is expected to reach $30 billion in the next five years.
Arizona State University has officially begun a new chapter in X-ray science with a newly commissioned, first-of-its-kind instrument that will help scientists see deeper into matter and living things. The device, called the compact X-ray light source (CXLS), marked a major milestone in its operations as ASU scientists generated its first X-rays on the night of Feb. 2.
“This marks the beginning of a new era of science with compact accelerator-based X‑ray sources,” said Robert Kaindl, who directs ASU’s Compact X-ray Free Electron Laser (CXFEL) Labs at the Biodesign Institute and is a professor in the Department of Physics. “The CXLS provides hard X-ray pulses with high flux, stability and ultrashort durations, in a very compact footprint. This way, matter can be resolved at its fundamental scales in space and time, enabling new discoveries across many fields — from next-generation materials for computing and information science, to renewable energy, biomolecular dynamics, drug discovery and human health.”
Building the compact X-ray light source is the first phase of a larger CXFEL project, which aims to build two instruments including a coherent X-ray laser. As the first-stage instrument, the ASU CXLS generates a high-flux beam of hard X‑rays, with wavelengths short enough to resolve the atomic structure of complex molecules. Moreover, its output is pulsed at extremely short durations of a few hundred femtoseconds — well below a millionth of one millionth of a second — and thus short enough to directly track the motions of atoms.
Synthetic biology has made major strides towards the holy grail of fully programmable bio-micromachines capable of sensing and responding to defined stimuli regardless of their environmental context. A common type of bio-micromachines is created by genetically modifying living cells.[1] Living cells possess the unique advantage of being highly adaptable and versatile.[2] To date, living cells have been successfully repurposed for a wide variety of applications, including living therapeutics,[3] bioremediation,[4] and drug and gene delivery.[5, 6] However, the resulting synthetic living cells are challenging to control due to their continuous adaption and evolving cellular context. Application of these autonomously replicating organisms often requires tailored biocontainment strategies,[7-9] which can raise logistical hurdles and safety concerns.
In contrast, nonliving synthetic cells, notably artificial cells,[10, 11] can be created using synthetic materials, such as polymers or phospholipids. Meticulous engineering of materials enables defined partitioning of bioactive agents, and the resulting biomimetic systems possess advantages including predictable functions, tolerance to certain environmental stressors, and ease of engineering.[12, 13] Nonliving cell-mimetic systems have been employed to deliver anticancer drugs,[14] promote antitumor immune responses,[15] communicate with other cells,[16, 17] mimic immune cells,[18, 19] and perform photosynthesis.