Toggle light / dark theme

Synthetic biology is radical and has huge potential to revolutionize multiple industries. The fact is biology has already worked out efficient ways of doing things, or has in place mechanisms we can adapt, so why reinvent anything if we can simply adapt what’s already here? Using billions of years of evolution makes logical sense, and that’s what synthetic biology builds on.

So here is a great video by Grist, explaining what synthetic biology is and what we might be able to do with it in the future.

Read more

Wyss Institute scientists believe that synthetic gene drives, if researched responsibly, might be used in the future to render mosquito populations unable to transmit malaria (credit: CDC)

An international group of 26 experts, including prominent genetic engineers and fruit fly geneticists, has unanimously recommended a series of preemptive measures to safeguard gene drive research from accidental (or intentional) release from laboratories.

RNA-guided gene drives are genetic elements — found naturally in the genomes of most of the world’s organisms — that increase the chance of the gene they carry being passed on to all offspring. So they can quickly spread through populations if not controlled.

Looking to these natural systems, researchers around the world, including some scientists, are developing synthetic gene drives that could one day be leveraged by humans to purposefully alter the traits of wild populations of organisms to prevent disease transmission and eradicate invasive species.

Read more

The Millennium Project released today its annual “2015–16 State of the Future” report, listing global trends on 28 indicators of progress and regress, new insights into 15 Global Challenges, and impacts of artificial intelligence, synthetic biology, nanotechnology and other advanced technologies on employment over the next 35 years.

“Another 2.3 billion people are expected to be added to the planet in just 35 years,” the report notes. “By 2050, new systems for food, water, energy, education, health, economics, and global governance will be needed to prevent massive and complex human and environmental disasters.”

Read more

Linked rat brains

Scientists have been experimenting with brain-to-brain interfaces for years. Miguel Nicolelis, a neurobiologist at Duke University Medical Center, has created a “Brainet” or a network of interconnected brains with four rats. With electrodes implanted directly in the cortex rodents exchange information to create an organic computing device. Collectively, they were able to solve computational problems including image processing, storing and recalling information and even predicting precipitation.

Read the full story by Mona Lalwani at Engadget

“In a sense, all four pillars of the mind-uploading roadmap—mapping the brain’s structure and function, creating the software and hardware to emulate it—are now areas of active research. If we take Koene’s optimistic view, within a decade, we may have the technological capacity to fully map and emulate a very simple brain—say, that of a Drosophila fruit fly, which contains roughly 100 thousand neurons. ”

Read more

“What makes organ chips potentially so effective in drug testing is that they create not just the biochemical environment necessary for the cells to thrive but also the physical one…This use of stem cells in organ chips raises the possibility of a device that represents an individual patient—a patient-on-a-chip, if you like. In this case all the tiny organs would be derived from a single person: tests could then be carried out on the device to find what combinations of drugs and dosages work best for that patient.” Read more