Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Path to Medical Superintelligence

Microsoft says it has developed an AI system that creates a ‘path to medical superintelligence’ that can deal with ‘diagnostically complex and intellectually demanding’ cases and diagnose disease four times more accurately than a panel of human doctors.

[ https://microsoft.ai/wp-content/uploads/2025/06/MAI-Dx-Orche…0x1498.jpg https://microsoft.ai/new/the-path-to-medical-superintelligence/

[ https://arxiv.org/abs/2506.22405](https://arxiv.org/abs/2506.

“Benchmarked against real-world case records published each week in the New England Journal of Medicine, we show that the Microsoft AI Diagnostic Orchestrator (MAI-DxO) correctly diagnoses up to 85% of NEJM case proceedings, a rate more than four times higher than a group of experienced physicians. MAI-DxO also gets to the correct diagnosis more cost-effectively than physicians.”

AI that thinks like a doctor: a new era in medical diagnosis.

Imagine walking into a doctor’s office with a strange set of symptoms. Rather than jumping to conclusions, the doctor carefully asks questions, orders tests, and adjusts their thinking at every step based on what they learn. This back-and-forth process—called sequential diagnosis—is what real-world medicine is all about. But most AI systems haven’t been tested this way. Until now.

A new benchmark called Sequential Diagnosis is flipping the script.

Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation

Year 2013 face_with_colon_three Basically this is the light based nanotransfection version that can eventually be put on a simple smartphone or smartwatch that can be an entire hospital in one touch healing the entire body in one touch or just areas that need healing.


Antkowiak, M., Torres-Mapa, M., Witts, E. et al. Sci Rep 3, 3,281 (2013). https://doi.org/10.1038/srep03281

Download citation.

How key brain cells help replay and store memories during rest and sleep

How does the brain store knowledge so that you actually remember what you have learned the next day or even later? To find out, researchers at the University of Oslo disconnected one type of nerve cell in the brain of mice while the animals rested after having learned something new. This gave new answers to what actually happens when you remember earlier experiences for later use. The study is published in the journal Science Advances.

In the first phase of this experiment, were trained to recognize that an image with a particular pattern meant that they would be given a reward in the form of a sweet drink. Two different groups of mice were then put in front of a computer screen where they were able to see several images containing different patterns. In order to demonstrate that they remembered which image led to a reward, the mice had to lick a small “nozzle” that dispensed the drink.

While the mice performed this action, researchers at the University of Oslo monitored the activity in their using a special microscope. “It took some time before the mice understood which pattern triggered a reward. We could see what was happening with their neurons while they mastered the task,” says researcher Kristian K. Lensjø, who works at the Institute of Basic Medical Sciences and the Department of Biosciences at the University of Oslo.

Newborns have elevated levels of a biomarker for Alzheimer’s

Newborn babies and patients with Alzheimer’s disease share an unexpected biological trait: elevated levels of a well-known biomarker for Alzheimer’s, as shown in a study led by researchers at the University of Gothenburg and published in Brain Communications.

First author Fernando Gonzalez-Ortiz and senior author Professor Kaj Blennow recently reported that both newborns and Alzheimer’s patients have elevated blood levels of a protein called phosphorylated tau, specifically a form called p-tau217.

This protein has largely been used as a diagnostic test for Alzheimer’s disease, where an increase in p-tau217 blood levels is proposed to be driven by another process, namely the aggregation of b-amyloid protein into amyloid plaques. Newborns (for natural reasons) do not have this type of pathological change, so interestingly, in newborns increased plasma p-tau217 seems to reflect a completely different—and entirely healthy—mechanism.