Toggle light / dark theme

Light-sensitive nanoparticles promise a wide range of applications, for example in the field of sensor technology or energy generation. However, these require knowledge and control of the processes taking place within them. Plasmons, collective electron movements in the nanoparticle which transport energy, are essential in the behaviour of such nanoparticles.

Time-resolved experiments in the attosecond range reveal now that the importance of electronic correlations in these plasmons increases when the size of a system decreases to scales of less than one nanometre.

The study, published in the journal Science Advances (“Correlation-driven attosecond photoemission delay in the plasmonic excitation of C 60 fullerene”), was led by the University of Hamburg and DESY as part of a collaboration with Stanford, SLAC National Accelerator Laboratory, Ludwig-Maximilians-Universität München (LMU), Northwest Missouri State University, Politecnico di Milano and the Max Planck Institute for the Structure and Dynamics of Matter (MPSD).

Summary: New research provides direct evidence that the gut microbiome communicates with the brain through the vagus nerve. Using germ-free mice, scientists observed significantly reduced vagal nerve activity, which returned to normal after introducing gut bacteria.

When antibiotics were used to eliminate bacteria in normal mice, vagal activity dropped but was restored when microbiome-derived intestinal fluids were reintroduced. Specific metabolites, including short-chain fatty acids and bile acids, were identified as key activators of vagal neurons.

These signals extended to the brainstem, confirming a clear gut-to-brain pathway. The findings advance understanding of the gut-brain axis and may lead to new treatments for neurological and gastrointestinal disorders.

An international team of researchers, including those from the University of Michigan, have used the James Webb Space Telescope (JWST) to witness the birth of planets around the young star system PDS 70.

PDS 70, located 370 light years away, is about 5 million years old and is one of the most extensively studied young stellar systems. It is the only known protoplanetary disk system where multiple planets have been detected within the disk from which they are forming.

This system allows scientists to observe planet formation and evolution in their early stages. In PDS 70, a disk of gas and dust surrounds the star with a big gap in the middle where two planets, PDS 70 b and PDS 70 c, form. This gap acts as a planetary construction zone, where the new worlds gather material to grow.

Before arriving at Janelia three years ago, Postdoctoral Scientist Antonio Fiore was designing and building optical instruments like microscopes and spectrometers. Fiore, a physicist by training, came to the Pedram Lab to try something new.

“I focused on the physics rather than investing in the biological applications of the optics I was developing,” Fiore says. “I came to the Pedram Lab in search of a different kind of impact, joining a team that explores areas of biology that need new tools, while keeping a connection to light microscopy.”

So far, Fiore’s new direction is paying off.

A team of physicists at Fudan University, working with colleagues from Henan University, both in China, and from Nanyang Technological University, in Singapore and Donostia International Physics Center, in Spain, has developed a way to generate topological structures in surface water using gravity water waves. In their study published in Nature, the group used their technique to generate structures such as wave vortices, skyrmions and Möbius strips.

Prior research has shown that various types of waves can be used to achieve desired goals in a variety of applications; , for example, are used to capture and manipulate individual or groups of molecules to create materials or test molecular properties. Sound waves can be used to control much larger particles, or even objects, such as the membrane in a stereo speaker.

For this new study, the research team found a way to generate topological structures on the surface of water by taking advantage of the noise that develops when waves are laid on top of one another, giving them topological properties that can be used to generate wave fields.

In today’s AI news, OpenAI will ship GPT-5 in a matter of months and streamline its AI models into more unified products, said CEO Sam Altman in an update. Specifically, Altman says the company plans to launch GPT-4.5 as its last non-chain-of-thought model and integrate its latest o3 reasoning model into GPT-5.

In other advancements, Harvey, a San Francisco AI startup focused on the legal industry, has raised $300 million in a funding round led by Sequoia that values the startup at $3 billion — double the amount investors valued it at in July. The Series D funding round builds on the momentum and reflects investors’ enthusiasm for AI tools …

Meanwhile, Meta is in talks to acquire South Korean AI chip startup FuriosaAI, according to people familiar with the matter, a deal that could boost the social media giant’s custom chip efforts amid a shortage of Nvidia chips and a growing demand for alternatives. The deal could be completed as early as this month.

Then, AI took another step into Hollywood today with the launch of a new filmmaking tool from showbiz startup Flawless. The product — named DeepEditor — promises cinematic wizardry for the digital age. For movie makers, the tool offers photorealistic edits without a costly return to set.

In videos, join IBM’s Boris Sobolev as he explains how model customization can enhance reliability and decision-making of agentic systems. Discover practical tips for data collection, tool use, and pushing the boundaries of what your AI can achieve. Supercharge your AI agents for peak performance!

Washington State University scientists have developed genetically engineered mice that could help accelerate anti-aging research.

Globally, researchers are striving to unlock the secrets of extending human lifespan at the cellular level, where aging occurs gradually due to the shortening of telomeres—the protective caps at the ends of chromosomes that function like shoelace tips, preventing unraveling. As telomeres shorten over time, cells lose their ability to divide for healthy growth, and some eventually begin to die.

However, studying telomeres at the cellular level has been challenging in humans.

As AIs rapidly advance and become more agentic, the risk they pose is governed not only by their capabilities but increasingly by their propensities, including goals and values. Tracking the emergence of goals and values has proven a longstanding problem, and despite much interest over the years it remains unclear whether current AIs have meaningful values. We propose a solution to this problem, leveraging the framework of utility functions to study the internal coherence of AI preferences. Surprisingly, we find that independently-sampled preferences in current LLMs exhibit high degrees of structural coherence, and moreover that this emerges with scale. These findings suggest that value systems emerge in LLMs in a meaningful sense, a finding with broad implications. To study these emergent value systems, we propose utility engineering as a research agenda, comprising both the analysis and control of AI utilities. We uncover problematic and often shocking values in LLM assistants despite existing control measures. These include cases where AIs value themselves over humans and are anti-aligned with specific individuals. To constrain these emergent value systems, we propose methods of utility control. As a case study, we show how aligning utilities with a citizen assembly reduces political biases and generalizes to new scenarios. Whether we like it or not, value systems have already emerged in AIs, and much work remains to fully understand and control these emergent representations.