Toggle light / dark theme

Have you ever questioned the deep nature of time? While some physicists argue that time is just an illusion, dismissing it outright contradicts our lived experience. In my latest work, Temporal Mechanics: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time (2025), I explore how time is deeply rooted in the computational nature of reality and information processing by conscious systems. This paper tackles why the “now” is all we have.

In the absence of observers, the cosmic arrow of time doesn’t exist. This statement is not merely philosophical; it is a profound implication of the problem of time in physics. In standard quantum mechanics, time is an external parameter, a backdrop against which events unfold. However, in quantum gravity and the Wheeler-DeWitt equation, the problem of time emerges because there is no preferred universal time variable—only a timeless wavefunction of the universe. The flow of time, as we experience it, arises not from any fundamental law but from the interaction between observers and the informational structure of reality.

Dr. Douglas Colquhoun: “Inhaled anesthetics are a natural area to pursue reductions in emissions because, as greenhouse gases, they are so disproportionately bad for the environment.”


How can greener anesthesia help both patients and the environment? This is what a recent study published in The Lancer Planetary Health hopes to address as a team of researchers at the University of Michigan (U-M) Medical School investigated a multitude of benefits regarding the use of anesthesia free of pollutants and greenhouse gases, which they are traditionally known to contain. This study has the potential to help researchers, medical professionals, legislators, and the public better understand the benefits of providing patients with “greener” anesthesia, along with the environmental benefits, as well.

For the study, the researchers started the Green Anesthesia Initiative (GAIA) in March 2022 to monitor the use of pollutant-free—such as nitrous oxide—anesthesia aged 1 year and older between March 1, 2021, and February 28, 2023. The goal of GAIA was to ascertain patient health and environmental impact resulting from this new anesthetic treatment. In the end, the researchers monitored 45,692 patients (50.8 percent women and 49.2 percent men) before GAIA and 47,199 patients (also 50.8 percent women and 49.2 percent men) after GAIA, with results showing a 14.38 kilograms (31.7 pounds) per patient reduction in carbon dioxide emissions.

“Tens of thousands of people undergo general anesthesia at Michigan Medicine every year,” said Dr. Douglas Colquhoun, who is an assistant professor of anesthesiology at U-M Medical School and lead author of the study. “Inhaled anesthetics are a natural area to pursue reductions in emissions because, as greenhouse gases, they are so disproportionately bad for the environment. We’ve shown that small changes in our practice lead to big changes for the environment and, importantly, no changes for the patients.”

Exosomes are small vesicles with diameters ranging from 30 to 150 nm. They originate from cellular endocytic systems. These vesicles contain a rich payload of biomolecules, including proteins, nucleic acids, lipids, and metabolic products. Exosomes mediate intercellular communication and are key regulators of a diverse array of biological processes, such as oxidative stress and chronic inflammation. Furthermore, exosomes have been implicated in the pathogenesis of infectious diseases, autoimmune disorders, and cancer. Aging is closely associated with the onset and progression of numerous diseases and is significantly influenced by exosomes. Recent studies have consistently highlighted the important functions of exosomes in the regulation of cellular senescence.

Working in the field of genetics is a bizarre experience. No one seems to be interested in the most interesting applications of their research.

We’ve spent the better part of the last two decades unravelling exactly how the human genome works and which specific letter changes in our DNA affect things like diabetes risk or college graduation rates. Our knowledge has advanced to the point where, if we had a safe and reliable means of modifying genes in embryos, we could literally create superbabies. Children that would live multiple decades longer than their non-engineered peers, have the raw intellectual horsepower to do Nobel prize worthy scientific research, and very rarely suffer from depression or other mental health disorders.

The scientific establishment, however, seems to not have gotten the memo. If you suggest we engineer the genes of future generations to make their lives better, they will often make some frightened noises, mention “ethical issues” without ever clarifying what they mean, or abruptly change the subject. It’s as if humanity invented electricity and decided the only interesting thing to do with it was make washing machines.

Pancreatic cancer is closely linked to the nervous system, according to researchers from the German Cancer Research Center (DKFZ) and the Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM). Their recent study, published in Nature, reveals that pancreatic tumors actively reprogram neurons to support their growth.

Google’s second generation of its AI mathematics system combines a language model with a symbolic engine to solve complex geometry problems better than International Mathematical Olympiad (IMO) gold medalists.

Then came gene targeting technologies, like CRISPR, over 10 years ago. With these technologies we can delete, modify, add, or change any gene in any organism’s DNA and it’s easy and cheap. Are you thinking what I’m thinking? Where are my Pokémon?

The scientific industrial complex is fundamentally broken. Scientists are trapped in a system of their own creation that values paywalled publications over real progress. If they can’t even make knowledge freely available, how can they be expected to push the boundaries of innovation? A field built on gatekeeping will never lead the future.

The real question isn’t whether we can do this. The real question is what comes next. The first steps are already happening in the lab of my new company, the Los Angeles Project (LAP). We are learning to harvest large amounts of embryos and eggs from different animal species so we can understand the development of life on a scale no one has tried before. We are editing genes and injecting DNA with micro-precision, sculpting biology at its most fundamental level.

Unlock the full potential of CRISPR technology while ensuring precision and safety! In this video, we dive deep into the science of CRISPR gene editing, explore the challenges of off-target effects, and reveal cutting-edge strategies to minimize risks.
📌 Key Topics Covered:

1️⃣ What is CRISPR?

Discover the origins of CRISPR-Cas9, its revolutionary impact on genetics, agriculture, and medicine, and the latest advancements like base editing and AI-driven optimization.
2️⃣ Understanding Off-Target Effects.

Learn why unintended DNA modifications occur, how gRNA promiscuity and nuclease activity contribute to risks, and proven mitigation strategies (e.g., HiFi Cas9, dual gRNA systems).